Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ecxrncnvep2 Structured version   Visualization version   GIF version

Theorem ecxrncnvep2 38444
Description: The (𝑅 E )-coset of a set is the Cartesian product of its 𝑅-coset and the set. (Contributed by Peter Mazsa, 25-Jan-2026.)
Assertion
Ref Expression
ecxrncnvep2 (𝐴𝑉 → [𝐴](𝑅 E ) = ([𝐴]𝑅 × 𝐴))

Proof of Theorem ecxrncnvep2
StepHypRef Expression
1 ecxrn2 38442 . 2 (𝐴𝑉 → [𝐴](𝑅 E ) = ([𝐴]𝑅 × [𝐴] E ))
2 eccnvep 38330 . . 3 (𝐴𝑉 → [𝐴] E = 𝐴)
32xpeq2d 5644 . 2 (𝐴𝑉 → ([𝐴]𝑅 × [𝐴] E ) = ([𝐴]𝑅 × 𝐴))
41, 3eqtrd 2766 1 (𝐴𝑉 → [𝐴](𝑅 E ) = ([𝐴]𝑅 × 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111   E cep 5513   × cxp 5612  ccnv 5613  [cec 8620  cxrn 38224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-eprel 5514  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489  df-1st 7921  df-2nd 7922  df-ec 8624  df-xrn 38414
This theorem is referenced by:  blockadjliftmap  38482  dfblockliftmap2  38484
  Copyright terms: Public domain W3C validator