MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr2v1e2w Structured version   Visualization version   GIF version

Theorem usgr2v1e2w 29017
Description: A simple graph with two vertices and one edge represented by a singleton word. (Contributed by AV, 9-Jan-2021.)
Assertion
Ref Expression
usgr2v1e2w ((𝐴𝑋𝐵𝑌𝐴𝐵) → ⟨{𝐴, 𝐵}, ⟨“{𝐴, 𝐵}”⟩⟩ ∈ USGraph)

Proof of Theorem usgr2v1e2w
StepHypRef Expression
1 prex 5425 . . . 4 {𝐴, 𝐵} ∈ V
2 s1val 14554 . . . 4 ({𝐴, 𝐵} ∈ V → ⟨“{𝐴, 𝐵}”⟩ = {⟨0, {𝐴, 𝐵}⟩})
31, 2mp1i 13 . . 3 ((𝐴𝑋𝐵𝑌𝐴𝐵) → ⟨“{𝐴, 𝐵}”⟩ = {⟨0, {𝐴, 𝐵}⟩})
43opeq2d 4875 . 2 ((𝐴𝑋𝐵𝑌𝐴𝐵) → ⟨{𝐴, 𝐵}, ⟨“{𝐴, 𝐵}”⟩⟩ = ⟨{𝐴, 𝐵}, {⟨0, {𝐴, 𝐵}⟩}⟩)
5 prid1g 4759 . . . . 5 (𝐴𝑋𝐴 ∈ {𝐴, 𝐵})
6 prid2g 4760 . . . . 5 (𝐵𝑌𝐵 ∈ {𝐴, 𝐵})
75, 6anim12i 612 . . . 4 ((𝐴𝑋𝐵𝑌) → (𝐴 ∈ {𝐴, 𝐵} ∧ 𝐵 ∈ {𝐴, 𝐵}))
8 c0ex 11212 . . . . 5 0 ∈ V
91, 8pm3.2i 470 . . . 4 ({𝐴, 𝐵} ∈ V ∧ 0 ∈ V)
107, 9jctil 519 . . 3 ((𝐴𝑋𝐵𝑌) → (({𝐴, 𝐵} ∈ V ∧ 0 ∈ V) ∧ (𝐴 ∈ {𝐴, 𝐵} ∧ 𝐵 ∈ {𝐴, 𝐵})))
11 usgr1eop 29015 . . . 4 ((({𝐴, 𝐵} ∈ V ∧ 0 ∈ V) ∧ (𝐴 ∈ {𝐴, 𝐵} ∧ 𝐵 ∈ {𝐴, 𝐵})) → (𝐴𝐵 → ⟨{𝐴, 𝐵}, {⟨0, {𝐴, 𝐵}⟩}⟩ ∈ USGraph))
1211imp 406 . . 3 (((({𝐴, 𝐵} ∈ V ∧ 0 ∈ V) ∧ (𝐴 ∈ {𝐴, 𝐵} ∧ 𝐵 ∈ {𝐴, 𝐵})) ∧ 𝐴𝐵) → ⟨{𝐴, 𝐵}, {⟨0, {𝐴, 𝐵}⟩}⟩ ∈ USGraph)
1310, 12stoic3 1770 . 2 ((𝐴𝑋𝐵𝑌𝐴𝐵) → ⟨{𝐴, 𝐵}, {⟨0, {𝐴, 𝐵}⟩}⟩ ∈ USGraph)
144, 13eqeltrd 2827 1 ((𝐴𝑋𝐵𝑌𝐴𝐵) → ⟨{𝐴, 𝐵}, ⟨“{𝐴, 𝐵}”⟩⟩ ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084   = wceq 1533  wcel 2098  wne 2934  Vcvv 3468  {csn 4623  {cpr 4625  cop 4629  0cc0 11112  ⟨“cs1 14551  USGraphcusgr 28917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-oadd 8471  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-dju 9898  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-n0 12477  df-xnn0 12549  df-z 12563  df-uz 12827  df-fz 13491  df-hash 14296  df-s1 14552  df-vtx 28766  df-iedg 28767  df-edg 28816  df-uspgr 28918  df-usgr 28919
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator