![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgr2v1e2w | Structured version Visualization version GIF version |
Description: A simple graph with two vertices and one edge represented by a singleton word. (Contributed by AV, 9-Jan-2021.) |
Ref | Expression |
---|---|
usgr2v1e2w | ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) → 〈{𝐴, 𝐵}, 〈“{𝐴, 𝐵}”〉〉 ∈ USGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prex 5438 | . . . 4 ⊢ {𝐴, 𝐵} ∈ V | |
2 | s1val 14606 | . . . 4 ⊢ ({𝐴, 𝐵} ∈ V → 〈“{𝐴, 𝐵}”〉 = {〈0, {𝐴, 𝐵}〉}) | |
3 | 1, 2 | mp1i 13 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) → 〈“{𝐴, 𝐵}”〉 = {〈0, {𝐴, 𝐵}〉}) |
4 | 3 | opeq2d 4886 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) → 〈{𝐴, 𝐵}, 〈“{𝐴, 𝐵}”〉〉 = 〈{𝐴, 𝐵}, {〈0, {𝐴, 𝐵}〉}〉) |
5 | prid1g 4769 | . . . . 5 ⊢ (𝐴 ∈ 𝑋 → 𝐴 ∈ {𝐴, 𝐵}) | |
6 | prid2g 4770 | . . . . 5 ⊢ (𝐵 ∈ 𝑌 → 𝐵 ∈ {𝐴, 𝐵}) | |
7 | 5, 6 | anim12i 611 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) → (𝐴 ∈ {𝐴, 𝐵} ∧ 𝐵 ∈ {𝐴, 𝐵})) |
8 | c0ex 11258 | . . . . 5 ⊢ 0 ∈ V | |
9 | 1, 8 | pm3.2i 469 | . . . 4 ⊢ ({𝐴, 𝐵} ∈ V ∧ 0 ∈ V) |
10 | 7, 9 | jctil 518 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) → (({𝐴, 𝐵} ∈ V ∧ 0 ∈ V) ∧ (𝐴 ∈ {𝐴, 𝐵} ∧ 𝐵 ∈ {𝐴, 𝐵}))) |
11 | usgr1eop 29186 | . . . 4 ⊢ ((({𝐴, 𝐵} ∈ V ∧ 0 ∈ V) ∧ (𝐴 ∈ {𝐴, 𝐵} ∧ 𝐵 ∈ {𝐴, 𝐵})) → (𝐴 ≠ 𝐵 → 〈{𝐴, 𝐵}, {〈0, {𝐴, 𝐵}〉}〉 ∈ USGraph)) | |
12 | 11 | imp 405 | . . 3 ⊢ (((({𝐴, 𝐵} ∈ V ∧ 0 ∈ V) ∧ (𝐴 ∈ {𝐴, 𝐵} ∧ 𝐵 ∈ {𝐴, 𝐵})) ∧ 𝐴 ≠ 𝐵) → 〈{𝐴, 𝐵}, {〈0, {𝐴, 𝐵}〉}〉 ∈ USGraph) |
13 | 10, 12 | stoic3 1771 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) → 〈{𝐴, 𝐵}, {〈0, {𝐴, 𝐵}〉}〉 ∈ USGraph) |
14 | 4, 13 | eqeltrd 2826 | 1 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) → 〈{𝐴, 𝐵}, 〈“{𝐴, 𝐵}”〉〉 ∈ USGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 Vcvv 3462 {csn 4633 {cpr 4635 〈cop 4639 0cc0 11158 〈“cs1 14603 USGraphcusgr 29085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-oadd 8500 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-dju 9944 df-card 9982 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-n0 12525 df-xnn0 12597 df-z 12611 df-uz 12875 df-fz 13539 df-hash 14348 df-s1 14604 df-vtx 28934 df-iedg 28935 df-edg 28984 df-uspgr 29086 df-usgr 29087 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |