Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvmptmap | Structured version Visualization version GIF version |
Description: Special case of fvmpt 6925 for operator theorems. (Contributed by NM, 27-Nov-2007.) |
Ref | Expression |
---|---|
fvmptmap.1 | ⊢ 𝐶 ∈ V |
fvmptmap.2 | ⊢ 𝐷 ∈ V |
fvmptmap.3 | ⊢ 𝑅 ∈ V |
fvmptmap.4 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
fvmptmap.5 | ⊢ 𝐹 = (𝑥 ∈ (𝑅 ↑m 𝐷) ↦ 𝐵) |
Ref | Expression |
---|---|
fvmptmap | ⊢ (𝐴:𝐷⟶𝑅 → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptmap.3 | . . 3 ⊢ 𝑅 ∈ V | |
2 | fvmptmap.2 | . . 3 ⊢ 𝐷 ∈ V | |
3 | 1, 2 | elmap 8722 | . 2 ⊢ (𝐴 ∈ (𝑅 ↑m 𝐷) ↔ 𝐴:𝐷⟶𝑅) |
4 | fvmptmap.4 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
5 | fvmptmap.5 | . . 3 ⊢ 𝐹 = (𝑥 ∈ (𝑅 ↑m 𝐷) ↦ 𝐵) | |
6 | fvmptmap.1 | . . 3 ⊢ 𝐶 ∈ V | |
7 | 4, 5, 6 | fvmpt 6925 | . 2 ⊢ (𝐴 ∈ (𝑅 ↑m 𝐷) → (𝐹‘𝐴) = 𝐶) |
8 | 3, 7 | sylbir 234 | 1 ⊢ (𝐴:𝐷⟶𝑅 → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ↦ cmpt 5172 ⟶wf 6469 ‘cfv 6473 (class class class)co 7329 ↑m cmap 8678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3727 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-fv 6481 df-ov 7332 df-oprab 7333 df-mpo 7334 df-map 8680 |
This theorem is referenced by: itg2val 24991 nmopval 30447 nmfnval 30467 eigvecval 30487 eigvalfval 30488 specval 30489 |
Copyright terms: Public domain | W3C validator |