MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptmap Structured version   Visualization version   GIF version

Theorem fvmptmap 8627
Description: Special case of fvmpt 6857 for operator theorems. (Contributed by NM, 27-Nov-2007.)
Hypotheses
Ref Expression
fvmptmap.1 𝐶 ∈ V
fvmptmap.2 𝐷 ∈ V
fvmptmap.3 𝑅 ∈ V
fvmptmap.4 (𝑥 = 𝐴𝐵 = 𝐶)
fvmptmap.5 𝐹 = (𝑥 ∈ (𝑅m 𝐷) ↦ 𝐵)
Assertion
Ref Expression
fvmptmap (𝐴:𝐷𝑅 → (𝐹𝐴) = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝑅
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fvmptmap
StepHypRef Expression
1 fvmptmap.3 . . 3 𝑅 ∈ V
2 fvmptmap.2 . . 3 𝐷 ∈ V
31, 2elmap 8617 . 2 (𝐴 ∈ (𝑅m 𝐷) ↔ 𝐴:𝐷𝑅)
4 fvmptmap.4 . . 3 (𝑥 = 𝐴𝐵 = 𝐶)
5 fvmptmap.5 . . 3 𝐹 = (𝑥 ∈ (𝑅m 𝐷) ↦ 𝐵)
6 fvmptmap.1 . . 3 𝐶 ∈ V
74, 5, 6fvmpt 6857 . 2 (𝐴 ∈ (𝑅m 𝐷) → (𝐹𝐴) = 𝐶)
83, 7sylbir 234 1 (𝐴:𝐷𝑅 → (𝐹𝐴) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575
This theorem is referenced by:  itg2val  24798  nmopval  30119  nmfnval  30139  eigvecval  30159  eigvalfval  30160  specval  30161
  Copyright terms: Public domain W3C validator