| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmptmap | Structured version Visualization version GIF version | ||
| Description: Special case of fvmpt 6929 for operator theorems. (Contributed by NM, 27-Nov-2007.) |
| Ref | Expression |
|---|---|
| fvmptmap.1 | ⊢ 𝐶 ∈ V |
| fvmptmap.2 | ⊢ 𝐷 ∈ V |
| fvmptmap.3 | ⊢ 𝑅 ∈ V |
| fvmptmap.4 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| fvmptmap.5 | ⊢ 𝐹 = (𝑥 ∈ (𝑅 ↑m 𝐷) ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fvmptmap | ⊢ (𝐴:𝐷⟶𝑅 → (𝐹‘𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptmap.3 | . . 3 ⊢ 𝑅 ∈ V | |
| 2 | fvmptmap.2 | . . 3 ⊢ 𝐷 ∈ V | |
| 3 | 1, 2 | elmap 8795 | . 2 ⊢ (𝐴 ∈ (𝑅 ↑m 𝐷) ↔ 𝐴:𝐷⟶𝑅) |
| 4 | fvmptmap.4 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 5 | fvmptmap.5 | . . 3 ⊢ 𝐹 = (𝑥 ∈ (𝑅 ↑m 𝐷) ↦ 𝐵) | |
| 6 | fvmptmap.1 | . . 3 ⊢ 𝐶 ∈ V | |
| 7 | 4, 5, 6 | fvmpt 6929 | . 2 ⊢ (𝐴 ∈ (𝑅 ↑m 𝐷) → (𝐹‘𝐴) = 𝐶) |
| 8 | 3, 7 | sylbir 235 | 1 ⊢ (𝐴:𝐷⟶𝑅 → (𝐹‘𝐴) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ↦ cmpt 5172 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 |
| This theorem is referenced by: itg2val 25654 nmopval 31831 nmfnval 31851 eigvecval 31871 eigvalfval 31872 specval 31873 |
| Copyright terms: Public domain | W3C validator |