Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elbigo2r | Structured version Visualization version GIF version |
Description: Sufficient condition for a function to be of order G(x). (Contributed by AV, 18-May-2020.) |
Ref | Expression |
---|---|
elbigo2r | ⊢ (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥 ∈ 𝐵 (𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑀 · (𝐺‘𝑥))))) → 𝐹 ∈ (Ο‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5073 | . . . . . 6 ⊢ (𝑦 = 𝐶 → (𝑦 ≤ 𝑥 ↔ 𝐶 ≤ 𝑥)) | |
2 | 1 | imbi1d 341 | . . . . 5 ⊢ (𝑦 = 𝐶 → ((𝑦 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥))) ↔ (𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥))))) |
3 | 2 | ralbidv 3120 | . . . 4 ⊢ (𝑦 = 𝐶 → (∀𝑥 ∈ 𝐵 (𝑦 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥))) ↔ ∀𝑥 ∈ 𝐵 (𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥))))) |
4 | oveq1 7262 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → (𝑚 · (𝐺‘𝑥)) = (𝑀 · (𝐺‘𝑥))) | |
5 | 4 | breq2d 5082 | . . . . . 6 ⊢ (𝑚 = 𝑀 → ((𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥)) ↔ (𝐹‘𝑥) ≤ (𝑀 · (𝐺‘𝑥)))) |
6 | 5 | imbi2d 340 | . . . . 5 ⊢ (𝑚 = 𝑀 → ((𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥))) ↔ (𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑀 · (𝐺‘𝑥))))) |
7 | 6 | ralbidv 3120 | . . . 4 ⊢ (𝑚 = 𝑀 → (∀𝑥 ∈ 𝐵 (𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥))) ↔ ∀𝑥 ∈ 𝐵 (𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑀 · (𝐺‘𝑥))))) |
8 | 3, 7 | rspc2ev 3564 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥 ∈ 𝐵 (𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑀 · (𝐺‘𝑥)))) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐵 (𝑦 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥)))) |
9 | 8 | 3ad2ant3 1133 | . 2 ⊢ (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥 ∈ 𝐵 (𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑀 · (𝐺‘𝑥))))) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐵 (𝑦 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥)))) |
10 | elbigo2 45786 | . . 3 ⊢ (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴)) → (𝐹 ∈ (Ο‘𝐺) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐵 (𝑦 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥))))) | |
11 | 10 | 3adant3 1130 | . 2 ⊢ (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥 ∈ 𝐵 (𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑀 · (𝐺‘𝑥))))) → (𝐹 ∈ (Ο‘𝐺) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐵 (𝑦 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥))))) |
12 | 9, 11 | mpbird 256 | 1 ⊢ (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥 ∈ 𝐵 (𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑀 · (𝐺‘𝑥))))) → 𝐹 ∈ (Ο‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ⊆ wss 3883 class class class wbr 5070 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 · cmul 10807 ≤ cle 10941 Οcbigo 45781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-ico 13014 df-bigo 45782 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |