Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elbigo2r Structured version   Visualization version   GIF version

Theorem elbigo2r 45787
Description: Sufficient condition for a function to be of order G(x). (Contributed by AV, 18-May-2020.)
Assertion
Ref Expression
elbigo2r (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥𝐵 (𝐶𝑥 → (𝐹𝑥) ≤ (𝑀 · (𝐺𝑥))))) → 𝐹 ∈ (Ο‘𝐺))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐹   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝑀

Proof of Theorem elbigo2r
Dummy variables 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5073 . . . . . 6 (𝑦 = 𝐶 → (𝑦𝑥𝐶𝑥))
21imbi1d 341 . . . . 5 (𝑦 = 𝐶 → ((𝑦𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥))) ↔ (𝐶𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥)))))
32ralbidv 3120 . . . 4 (𝑦 = 𝐶 → (∀𝑥𝐵 (𝑦𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥))) ↔ ∀𝑥𝐵 (𝐶𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥)))))
4 oveq1 7262 . . . . . . 7 (𝑚 = 𝑀 → (𝑚 · (𝐺𝑥)) = (𝑀 · (𝐺𝑥)))
54breq2d 5082 . . . . . 6 (𝑚 = 𝑀 → ((𝐹𝑥) ≤ (𝑚 · (𝐺𝑥)) ↔ (𝐹𝑥) ≤ (𝑀 · (𝐺𝑥))))
65imbi2d 340 . . . . 5 (𝑚 = 𝑀 → ((𝐶𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥))) ↔ (𝐶𝑥 → (𝐹𝑥) ≤ (𝑀 · (𝐺𝑥)))))
76ralbidv 3120 . . . 4 (𝑚 = 𝑀 → (∀𝑥𝐵 (𝐶𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥))) ↔ ∀𝑥𝐵 (𝐶𝑥 → (𝐹𝑥) ≤ (𝑀 · (𝐺𝑥)))))
83, 7rspc2ev 3564 . . 3 ((𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥𝐵 (𝐶𝑥 → (𝐹𝑥) ≤ (𝑀 · (𝐺𝑥)))) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐵 (𝑦𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥))))
983ad2ant3 1133 . 2 (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥𝐵 (𝐶𝑥 → (𝐹𝑥) ≤ (𝑀 · (𝐺𝑥))))) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐵 (𝑦𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥))))
10 elbigo2 45786 . . 3 (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴)) → (𝐹 ∈ (Ο‘𝐺) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐵 (𝑦𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥)))))
11103adant3 1130 . 2 (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥𝐵 (𝐶𝑥 → (𝐹𝑥) ≤ (𝑀 · (𝐺𝑥))))) → (𝐹 ∈ (Ο‘𝐺) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐵 (𝑦𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥)))))
129, 11mpbird 256 1 (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥𝐵 (𝐶𝑥 → (𝐹𝑥) ≤ (𝑀 · (𝐺𝑥))))) → 𝐹 ∈ (Ο‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  wss 3883   class class class wbr 5070  wf 6414  cfv 6418  (class class class)co 7255  cr 10801   · cmul 10807  cle 10941  Οcbigo 45781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-pre-lttri 10876  ax-pre-lttrn 10877
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-ico 13014  df-bigo 45782
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator