Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elbigo2r Structured version   Visualization version   GIF version

Theorem elbigo2r 44967
Description: Sufficient condition for a function to be of order G(x). (Contributed by AV, 18-May-2020.)
Assertion
Ref Expression
elbigo2r (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥𝐵 (𝐶𝑥 → (𝐹𝑥) ≤ (𝑀 · (𝐺𝑥))))) → 𝐹 ∈ (Ο‘𝐺))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐹   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝑀

Proof of Theorem elbigo2r
Dummy variables 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5033 . . . . . 6 (𝑦 = 𝐶 → (𝑦𝑥𝐶𝑥))
21imbi1d 345 . . . . 5 (𝑦 = 𝐶 → ((𝑦𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥))) ↔ (𝐶𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥)))))
32ralbidv 3162 . . . 4 (𝑦 = 𝐶 → (∀𝑥𝐵 (𝑦𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥))) ↔ ∀𝑥𝐵 (𝐶𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥)))))
4 oveq1 7142 . . . . . . 7 (𝑚 = 𝑀 → (𝑚 · (𝐺𝑥)) = (𝑀 · (𝐺𝑥)))
54breq2d 5042 . . . . . 6 (𝑚 = 𝑀 → ((𝐹𝑥) ≤ (𝑚 · (𝐺𝑥)) ↔ (𝐹𝑥) ≤ (𝑀 · (𝐺𝑥))))
65imbi2d 344 . . . . 5 (𝑚 = 𝑀 → ((𝐶𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥))) ↔ (𝐶𝑥 → (𝐹𝑥) ≤ (𝑀 · (𝐺𝑥)))))
76ralbidv 3162 . . . 4 (𝑚 = 𝑀 → (∀𝑥𝐵 (𝐶𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥))) ↔ ∀𝑥𝐵 (𝐶𝑥 → (𝐹𝑥) ≤ (𝑀 · (𝐺𝑥)))))
83, 7rspc2ev 3583 . . 3 ((𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥𝐵 (𝐶𝑥 → (𝐹𝑥) ≤ (𝑀 · (𝐺𝑥)))) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐵 (𝑦𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥))))
983ad2ant3 1132 . 2 (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥𝐵 (𝐶𝑥 → (𝐹𝑥) ≤ (𝑀 · (𝐺𝑥))))) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐵 (𝑦𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥))))
10 elbigo2 44966 . . 3 (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴)) → (𝐹 ∈ (Ο‘𝐺) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐵 (𝑦𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥)))))
11103adant3 1129 . 2 (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥𝐵 (𝐶𝑥 → (𝐹𝑥) ≤ (𝑀 · (𝐺𝑥))))) → (𝐹 ∈ (Ο‘𝐺) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐵 (𝑦𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥)))))
129, 11mpbird 260 1 (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥𝐵 (𝐶𝑥 → (𝐹𝑥) ≤ (𝑀 · (𝐺𝑥))))) → 𝐹 ∈ (Ο‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  wrex 3107  wss 3881   class class class wbr 5030  wf 6320  cfv 6324  (class class class)co 7135  cr 10525   · cmul 10531  cle 10665  Οcbigo 44961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-pre-lttri 10600  ax-pre-lttrn 10601
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-er 8272  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-ico 12732  df-bigo 44962
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator