| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elbigo2r | Structured version Visualization version GIF version | ||
| Description: Sufficient condition for a function to be of order G(x). (Contributed by AV, 18-May-2020.) |
| Ref | Expression |
|---|---|
| elbigo2r | ⊢ (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥 ∈ 𝐵 (𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑀 · (𝐺‘𝑥))))) → 𝐹 ∈ (Ο‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5094 | . . . . . 6 ⊢ (𝑦 = 𝐶 → (𝑦 ≤ 𝑥 ↔ 𝐶 ≤ 𝑥)) | |
| 2 | 1 | imbi1d 341 | . . . . 5 ⊢ (𝑦 = 𝐶 → ((𝑦 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥))) ↔ (𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥))))) |
| 3 | 2 | ralbidv 3155 | . . . 4 ⊢ (𝑦 = 𝐶 → (∀𝑥 ∈ 𝐵 (𝑦 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥))) ↔ ∀𝑥 ∈ 𝐵 (𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥))))) |
| 4 | oveq1 7353 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → (𝑚 · (𝐺‘𝑥)) = (𝑀 · (𝐺‘𝑥))) | |
| 5 | 4 | breq2d 5103 | . . . . . 6 ⊢ (𝑚 = 𝑀 → ((𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥)) ↔ (𝐹‘𝑥) ≤ (𝑀 · (𝐺‘𝑥)))) |
| 6 | 5 | imbi2d 340 | . . . . 5 ⊢ (𝑚 = 𝑀 → ((𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥))) ↔ (𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑀 · (𝐺‘𝑥))))) |
| 7 | 6 | ralbidv 3155 | . . . 4 ⊢ (𝑚 = 𝑀 → (∀𝑥 ∈ 𝐵 (𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥))) ↔ ∀𝑥 ∈ 𝐵 (𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑀 · (𝐺‘𝑥))))) |
| 8 | 3, 7 | rspc2ev 3590 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥 ∈ 𝐵 (𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑀 · (𝐺‘𝑥)))) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐵 (𝑦 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥)))) |
| 9 | 8 | 3ad2ant3 1135 | . 2 ⊢ (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥 ∈ 𝐵 (𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑀 · (𝐺‘𝑥))))) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐵 (𝑦 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥)))) |
| 10 | elbigo2 48590 | . . 3 ⊢ (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴)) → (𝐹 ∈ (Ο‘𝐺) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐵 (𝑦 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥))))) | |
| 11 | 10 | 3adant3 1132 | . 2 ⊢ (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥 ∈ 𝐵 (𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑀 · (𝐺‘𝑥))))) → (𝐹 ∈ (Ο‘𝐺) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐵 (𝑦 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥))))) |
| 12 | 9, 11 | mpbird 257 | 1 ⊢ (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥 ∈ 𝐵 (𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑀 · (𝐺‘𝑥))))) → 𝐹 ∈ (Ο‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ⊆ wss 3902 class class class wbr 5091 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 · cmul 11011 ≤ cle 11147 Οcbigo 48585 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-ico 13251 df-bigo 48586 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |