Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elbigo2r Structured version   Visualization version   GIF version

Theorem elbigo2r 45899
Description: Sufficient condition for a function to be of order G(x). (Contributed by AV, 18-May-2020.)
Assertion
Ref Expression
elbigo2r (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥𝐵 (𝐶𝑥 → (𝐹𝑥) ≤ (𝑀 · (𝐺𝑥))))) → 𝐹 ∈ (Ο‘𝐺))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐹   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝑀

Proof of Theorem elbigo2r
Dummy variables 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5077 . . . . . 6 (𝑦 = 𝐶 → (𝑦𝑥𝐶𝑥))
21imbi1d 342 . . . . 5 (𝑦 = 𝐶 → ((𝑦𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥))) ↔ (𝐶𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥)))))
32ralbidv 3112 . . . 4 (𝑦 = 𝐶 → (∀𝑥𝐵 (𝑦𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥))) ↔ ∀𝑥𝐵 (𝐶𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥)))))
4 oveq1 7282 . . . . . . 7 (𝑚 = 𝑀 → (𝑚 · (𝐺𝑥)) = (𝑀 · (𝐺𝑥)))
54breq2d 5086 . . . . . 6 (𝑚 = 𝑀 → ((𝐹𝑥) ≤ (𝑚 · (𝐺𝑥)) ↔ (𝐹𝑥) ≤ (𝑀 · (𝐺𝑥))))
65imbi2d 341 . . . . 5 (𝑚 = 𝑀 → ((𝐶𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥))) ↔ (𝐶𝑥 → (𝐹𝑥) ≤ (𝑀 · (𝐺𝑥)))))
76ralbidv 3112 . . . 4 (𝑚 = 𝑀 → (∀𝑥𝐵 (𝐶𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥))) ↔ ∀𝑥𝐵 (𝐶𝑥 → (𝐹𝑥) ≤ (𝑀 · (𝐺𝑥)))))
83, 7rspc2ev 3572 . . 3 ((𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥𝐵 (𝐶𝑥 → (𝐹𝑥) ≤ (𝑀 · (𝐺𝑥)))) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐵 (𝑦𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥))))
983ad2ant3 1134 . 2 (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥𝐵 (𝐶𝑥 → (𝐹𝑥) ≤ (𝑀 · (𝐺𝑥))))) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐵 (𝑦𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥))))
10 elbigo2 45898 . . 3 (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴)) → (𝐹 ∈ (Ο‘𝐺) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐵 (𝑦𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥)))))
11103adant3 1131 . 2 (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥𝐵 (𝐶𝑥 → (𝐹𝑥) ≤ (𝑀 · (𝐺𝑥))))) → (𝐹 ∈ (Ο‘𝐺) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐵 (𝑦𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥)))))
129, 11mpbird 256 1 (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥𝐵 (𝐶𝑥 → (𝐹𝑥) ≤ (𝑀 · (𝐺𝑥))))) → 𝐹 ∈ (Ο‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  wss 3887   class class class wbr 5074  wf 6429  cfv 6433  (class class class)co 7275  cr 10870   · cmul 10876  cle 11010  Οcbigo 45893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-ico 13085  df-bigo 45894
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator