![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elbigo2r | Structured version Visualization version GIF version |
Description: Sufficient condition for a function to be of order G(x). (Contributed by AV, 18-May-2020.) |
Ref | Expression |
---|---|
elbigo2r | ⊢ (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥 ∈ 𝐵 (𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑀 · (𝐺‘𝑥))))) → 𝐹 ∈ (Ο‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5169 | . . . . . 6 ⊢ (𝑦 = 𝐶 → (𝑦 ≤ 𝑥 ↔ 𝐶 ≤ 𝑥)) | |
2 | 1 | imbi1d 341 | . . . . 5 ⊢ (𝑦 = 𝐶 → ((𝑦 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥))) ↔ (𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥))))) |
3 | 2 | ralbidv 3184 | . . . 4 ⊢ (𝑦 = 𝐶 → (∀𝑥 ∈ 𝐵 (𝑦 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥))) ↔ ∀𝑥 ∈ 𝐵 (𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥))))) |
4 | oveq1 7455 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → (𝑚 · (𝐺‘𝑥)) = (𝑀 · (𝐺‘𝑥))) | |
5 | 4 | breq2d 5178 | . . . . . 6 ⊢ (𝑚 = 𝑀 → ((𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥)) ↔ (𝐹‘𝑥) ≤ (𝑀 · (𝐺‘𝑥)))) |
6 | 5 | imbi2d 340 | . . . . 5 ⊢ (𝑚 = 𝑀 → ((𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥))) ↔ (𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑀 · (𝐺‘𝑥))))) |
7 | 6 | ralbidv 3184 | . . . 4 ⊢ (𝑚 = 𝑀 → (∀𝑥 ∈ 𝐵 (𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥))) ↔ ∀𝑥 ∈ 𝐵 (𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑀 · (𝐺‘𝑥))))) |
8 | 3, 7 | rspc2ev 3648 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥 ∈ 𝐵 (𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑀 · (𝐺‘𝑥)))) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐵 (𝑦 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥)))) |
9 | 8 | 3ad2ant3 1135 | . 2 ⊢ (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥 ∈ 𝐵 (𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑀 · (𝐺‘𝑥))))) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐵 (𝑦 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥)))) |
10 | elbigo2 48286 | . . 3 ⊢ (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴)) → (𝐹 ∈ (Ο‘𝐺) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐵 (𝑦 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥))))) | |
11 | 10 | 3adant3 1132 | . 2 ⊢ (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥 ∈ 𝐵 (𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑀 · (𝐺‘𝑥))))) → (𝐹 ∈ (Ο‘𝐺) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐵 (𝑦 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥))))) |
12 | 9, 11 | mpbird 257 | 1 ⊢ (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥 ∈ 𝐵 (𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑀 · (𝐺‘𝑥))))) → 𝐹 ∈ (Ο‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ⊆ wss 3976 class class class wbr 5166 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 · cmul 11189 ≤ cle 11325 Οcbigo 48281 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-ico 13413 df-bigo 48282 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |