![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elbigo2r | Structured version Visualization version GIF version |
Description: Sufficient condition for a function to be of order G(x). (Contributed by AV, 18-May-2020.) |
Ref | Expression |
---|---|
elbigo2r | ⊢ (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥 ∈ 𝐵 (𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑀 · (𝐺‘𝑥))))) → 𝐹 ∈ (Ο‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5151 | . . . . . 6 ⊢ (𝑦 = 𝐶 → (𝑦 ≤ 𝑥 ↔ 𝐶 ≤ 𝑥)) | |
2 | 1 | imbi1d 341 | . . . . 5 ⊢ (𝑦 = 𝐶 → ((𝑦 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥))) ↔ (𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥))))) |
3 | 2 | ralbidv 3176 | . . . 4 ⊢ (𝑦 = 𝐶 → (∀𝑥 ∈ 𝐵 (𝑦 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥))) ↔ ∀𝑥 ∈ 𝐵 (𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥))))) |
4 | oveq1 7419 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → (𝑚 · (𝐺‘𝑥)) = (𝑀 · (𝐺‘𝑥))) | |
5 | 4 | breq2d 5160 | . . . . . 6 ⊢ (𝑚 = 𝑀 → ((𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥)) ↔ (𝐹‘𝑥) ≤ (𝑀 · (𝐺‘𝑥)))) |
6 | 5 | imbi2d 340 | . . . . 5 ⊢ (𝑚 = 𝑀 → ((𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥))) ↔ (𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑀 · (𝐺‘𝑥))))) |
7 | 6 | ralbidv 3176 | . . . 4 ⊢ (𝑚 = 𝑀 → (∀𝑥 ∈ 𝐵 (𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥))) ↔ ∀𝑥 ∈ 𝐵 (𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑀 · (𝐺‘𝑥))))) |
8 | 3, 7 | rspc2ev 3624 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥 ∈ 𝐵 (𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑀 · (𝐺‘𝑥)))) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐵 (𝑦 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥)))) |
9 | 8 | 3ad2ant3 1134 | . 2 ⊢ (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥 ∈ 𝐵 (𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑀 · (𝐺‘𝑥))))) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐵 (𝑦 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥)))) |
10 | elbigo2 47400 | . . 3 ⊢ (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴)) → (𝐹 ∈ (Ο‘𝐺) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐵 (𝑦 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥))))) | |
11 | 10 | 3adant3 1131 | . 2 ⊢ (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥 ∈ 𝐵 (𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑀 · (𝐺‘𝑥))))) → (𝐹 ∈ (Ο‘𝐺) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐵 (𝑦 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑚 · (𝐺‘𝑥))))) |
12 | 9, 11 | mpbird 257 | 1 ⊢ (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥 ∈ 𝐵 (𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑀 · (𝐺‘𝑥))))) → 𝐹 ∈ (Ο‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∀wral 3060 ∃wrex 3069 ⊆ wss 3948 class class class wbr 5148 ⟶wf 6539 ‘cfv 6543 (class class class)co 7412 ℝcr 11115 · cmul 11121 ≤ cle 11256 Οcbigo 47395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-pre-lttri 11190 ax-pre-lttrn 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-er 8709 df-pm 8829 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-ico 13337 df-bigo 47396 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |