Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elbigo2r Structured version   Visualization version   GIF version

Theorem elbigo2r 48546
Description: Sufficient condition for a function to be of order G(x). (Contributed by AV, 18-May-2020.)
Assertion
Ref Expression
elbigo2r (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥𝐵 (𝐶𝑥 → (𝐹𝑥) ≤ (𝑀 · (𝐺𝑥))))) → 𝐹 ∈ (Ο‘𝐺))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐹   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝑀

Proof of Theorem elbigo2r
Dummy variables 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5113 . . . . . 6 (𝑦 = 𝐶 → (𝑦𝑥𝐶𝑥))
21imbi1d 341 . . . . 5 (𝑦 = 𝐶 → ((𝑦𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥))) ↔ (𝐶𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥)))))
32ralbidv 3157 . . . 4 (𝑦 = 𝐶 → (∀𝑥𝐵 (𝑦𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥))) ↔ ∀𝑥𝐵 (𝐶𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥)))))
4 oveq1 7397 . . . . . . 7 (𝑚 = 𝑀 → (𝑚 · (𝐺𝑥)) = (𝑀 · (𝐺𝑥)))
54breq2d 5122 . . . . . 6 (𝑚 = 𝑀 → ((𝐹𝑥) ≤ (𝑚 · (𝐺𝑥)) ↔ (𝐹𝑥) ≤ (𝑀 · (𝐺𝑥))))
65imbi2d 340 . . . . 5 (𝑚 = 𝑀 → ((𝐶𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥))) ↔ (𝐶𝑥 → (𝐹𝑥) ≤ (𝑀 · (𝐺𝑥)))))
76ralbidv 3157 . . . 4 (𝑚 = 𝑀 → (∀𝑥𝐵 (𝐶𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥))) ↔ ∀𝑥𝐵 (𝐶𝑥 → (𝐹𝑥) ≤ (𝑀 · (𝐺𝑥)))))
83, 7rspc2ev 3604 . . 3 ((𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥𝐵 (𝐶𝑥 → (𝐹𝑥) ≤ (𝑀 · (𝐺𝑥)))) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐵 (𝑦𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥))))
983ad2ant3 1135 . 2 (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥𝐵 (𝐶𝑥 → (𝐹𝑥) ≤ (𝑀 · (𝐺𝑥))))) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐵 (𝑦𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥))))
10 elbigo2 48545 . . 3 (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴)) → (𝐹 ∈ (Ο‘𝐺) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐵 (𝑦𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥)))))
11103adant3 1132 . 2 (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥𝐵 (𝐶𝑥 → (𝐹𝑥) ≤ (𝑀 · (𝐺𝑥))))) → (𝐹 ∈ (Ο‘𝐺) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐵 (𝑦𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥)))))
129, 11mpbird 257 1 (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥𝐵 (𝐶𝑥 → (𝐹𝑥) ≤ (𝑀 · (𝐺𝑥))))) → 𝐹 ∈ (Ο‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  wss 3917   class class class wbr 5110  wf 6510  cfv 6514  (class class class)co 7390  cr 11074   · cmul 11080  cle 11216  Οcbigo 48540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-pre-lttri 11149  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-ico 13319  df-bigo 48541
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator