Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elclnbgrelnbgr Structured version   Visualization version   GIF version

Theorem elclnbgrelnbgr 47819
Description: An element of the closed neighborhood of a vertex which is not the vertex itself is an element of the open neighborhood of the vertex. (Contributed by AV, 24-Sep-2025.)
Assertion
Ref Expression
elclnbgrelnbgr ((𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) ∧ 𝑋𝑁) → 𝑋 ∈ (𝐺 NeighbVtx 𝑁))

Proof of Theorem elclnbgrelnbgr
StepHypRef Expression
1 eqid 2729 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
21clnbgrcl 47815 . . . . . 6 (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → 𝑁 ∈ (Vtx‘𝐺))
31dfclnbgr4 47818 . . . . . 6 (𝑁 ∈ (Vtx‘𝐺) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁)))
42, 3syl 17 . . . . 5 (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁)))
54eleq2d 2814 . . . 4 (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) ↔ 𝑋 ∈ ({𝑁} ∪ (𝐺 NeighbVtx 𝑁))))
6 elun 4104 . . . . 5 (𝑋 ∈ ({𝑁} ∪ (𝐺 NeighbVtx 𝑁)) ↔ (𝑋 ∈ {𝑁} ∨ 𝑋 ∈ (𝐺 NeighbVtx 𝑁)))
7 elsng 4591 . . . . . . 7 (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ∈ {𝑁} ↔ 𝑋 = 𝑁))
8 eqneqall 2936 . . . . . . . 8 (𝑋 = 𝑁 → (𝑋𝑁𝑋 ∈ (𝐺 NeighbVtx 𝑁)))
98a1i 11 . . . . . . 7 (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 = 𝑁 → (𝑋𝑁𝑋 ∈ (𝐺 NeighbVtx 𝑁))))
107, 9sylbid 240 . . . . . 6 (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ∈ {𝑁} → (𝑋𝑁𝑋 ∈ (𝐺 NeighbVtx 𝑁))))
11 ax-1 6 . . . . . . 7 (𝑋 ∈ (𝐺 NeighbVtx 𝑁) → (𝑋𝑁𝑋 ∈ (𝐺 NeighbVtx 𝑁)))
1211a1i 11 . . . . . 6 (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ∈ (𝐺 NeighbVtx 𝑁) → (𝑋𝑁𝑋 ∈ (𝐺 NeighbVtx 𝑁))))
1310, 12jaod 859 . . . . 5 (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → ((𝑋 ∈ {𝑁} ∨ 𝑋 ∈ (𝐺 NeighbVtx 𝑁)) → (𝑋𝑁𝑋 ∈ (𝐺 NeighbVtx 𝑁))))
146, 13biimtrid 242 . . . 4 (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ∈ ({𝑁} ∪ (𝐺 NeighbVtx 𝑁)) → (𝑋𝑁𝑋 ∈ (𝐺 NeighbVtx 𝑁))))
155, 14sylbid 240 . . 3 (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋𝑁𝑋 ∈ (𝐺 NeighbVtx 𝑁))))
1615pm2.43i 52 . 2 (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋𝑁𝑋 ∈ (𝐺 NeighbVtx 𝑁)))
1716imp 406 1 ((𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) ∧ 𝑋𝑁) → 𝑋 ∈ (𝐺 NeighbVtx 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  cun 3901  {csn 4577  cfv 6482  (class class class)co 7349  Vtxcvtx 28941   NeighbVtx cnbgr 29277   ClNeighbVtx cclnbgr 47812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-nbgr 29278  df-clnbgr 47813
This theorem is referenced by:  isubgr3stgrlem6  47965
  Copyright terms: Public domain W3C validator