| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elclnbgrelnbgr | Structured version Visualization version GIF version | ||
| Description: An element of the closed neighborhood of a vertex which is not the vertex itself is an element of the open neighborhood of the vertex. (Contributed by AV, 24-Sep-2025.) |
| Ref | Expression |
|---|---|
| elclnbgrelnbgr | ⊢ ((𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) ∧ 𝑋 ≠ 𝑁) → 𝑋 ∈ (𝐺 NeighbVtx 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . . . . . 7 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | 1 | clnbgrcl 47783 | . . . . . 6 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → 𝑁 ∈ (Vtx‘𝐺)) |
| 3 | 1 | dfclnbgr4 47786 | . . . . . 6 ⊢ (𝑁 ∈ (Vtx‘𝐺) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁))) |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁))) |
| 5 | 4 | eleq2d 2820 | . . . 4 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) ↔ 𝑋 ∈ ({𝑁} ∪ (𝐺 NeighbVtx 𝑁)))) |
| 6 | elun 4128 | . . . . 5 ⊢ (𝑋 ∈ ({𝑁} ∪ (𝐺 NeighbVtx 𝑁)) ↔ (𝑋 ∈ {𝑁} ∨ 𝑋 ∈ (𝐺 NeighbVtx 𝑁))) | |
| 7 | elsng 4615 | . . . . . . 7 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ∈ {𝑁} ↔ 𝑋 = 𝑁)) | |
| 8 | eqneqall 2943 | . . . . . . . 8 ⊢ (𝑋 = 𝑁 → (𝑋 ≠ 𝑁 → 𝑋 ∈ (𝐺 NeighbVtx 𝑁))) | |
| 9 | 8 | a1i 11 | . . . . . . 7 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 = 𝑁 → (𝑋 ≠ 𝑁 → 𝑋 ∈ (𝐺 NeighbVtx 𝑁)))) |
| 10 | 7, 9 | sylbid 240 | . . . . . 6 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ∈ {𝑁} → (𝑋 ≠ 𝑁 → 𝑋 ∈ (𝐺 NeighbVtx 𝑁)))) |
| 11 | ax-1 6 | . . . . . . 7 ⊢ (𝑋 ∈ (𝐺 NeighbVtx 𝑁) → (𝑋 ≠ 𝑁 → 𝑋 ∈ (𝐺 NeighbVtx 𝑁))) | |
| 12 | 11 | a1i 11 | . . . . . 6 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ∈ (𝐺 NeighbVtx 𝑁) → (𝑋 ≠ 𝑁 → 𝑋 ∈ (𝐺 NeighbVtx 𝑁)))) |
| 13 | 10, 12 | jaod 859 | . . . . 5 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → ((𝑋 ∈ {𝑁} ∨ 𝑋 ∈ (𝐺 NeighbVtx 𝑁)) → (𝑋 ≠ 𝑁 → 𝑋 ∈ (𝐺 NeighbVtx 𝑁)))) |
| 14 | 6, 13 | biimtrid 242 | . . . 4 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ∈ ({𝑁} ∪ (𝐺 NeighbVtx 𝑁)) → (𝑋 ≠ 𝑁 → 𝑋 ∈ (𝐺 NeighbVtx 𝑁)))) |
| 15 | 5, 14 | sylbid 240 | . . 3 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ≠ 𝑁 → 𝑋 ∈ (𝐺 NeighbVtx 𝑁)))) |
| 16 | 15 | pm2.43i 52 | . 2 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ≠ 𝑁 → 𝑋 ∈ (𝐺 NeighbVtx 𝑁))) |
| 17 | 16 | imp 406 | 1 ⊢ ((𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) ∧ 𝑋 ≠ 𝑁) → 𝑋 ∈ (𝐺 NeighbVtx 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∪ cun 3924 {csn 4601 ‘cfv 6530 (class class class)co 7403 Vtxcvtx 28921 NeighbVtx cnbgr 29257 ClNeighbVtx cclnbgr 47780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-1st 7986 df-2nd 7987 df-nbgr 29258 df-clnbgr 47781 |
| This theorem is referenced by: isubgr3stgrlem6 47931 |
| Copyright terms: Public domain | W3C validator |