Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elclnbgrelnbgr Structured version   Visualization version   GIF version

Theorem elclnbgrelnbgr 47924
Description: An element of the closed neighborhood of a vertex which is not the vertex itself is an element of the open neighborhood of the vertex. (Contributed by AV, 24-Sep-2025.)
Assertion
Ref Expression
elclnbgrelnbgr ((𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) ∧ 𝑋𝑁) → 𝑋 ∈ (𝐺 NeighbVtx 𝑁))

Proof of Theorem elclnbgrelnbgr
StepHypRef Expression
1 eqid 2731 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
21clnbgrcl 47920 . . . . . 6 (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → 𝑁 ∈ (Vtx‘𝐺))
31dfclnbgr4 47923 . . . . . 6 (𝑁 ∈ (Vtx‘𝐺) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁)))
42, 3syl 17 . . . . 5 (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁)))
54eleq2d 2817 . . . 4 (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) ↔ 𝑋 ∈ ({𝑁} ∪ (𝐺 NeighbVtx 𝑁))))
6 elun 4100 . . . . 5 (𝑋 ∈ ({𝑁} ∪ (𝐺 NeighbVtx 𝑁)) ↔ (𝑋 ∈ {𝑁} ∨ 𝑋 ∈ (𝐺 NeighbVtx 𝑁)))
7 elsng 4587 . . . . . . 7 (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ∈ {𝑁} ↔ 𝑋 = 𝑁))
8 eqneqall 2939 . . . . . . . 8 (𝑋 = 𝑁 → (𝑋𝑁𝑋 ∈ (𝐺 NeighbVtx 𝑁)))
98a1i 11 . . . . . . 7 (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 = 𝑁 → (𝑋𝑁𝑋 ∈ (𝐺 NeighbVtx 𝑁))))
107, 9sylbid 240 . . . . . 6 (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ∈ {𝑁} → (𝑋𝑁𝑋 ∈ (𝐺 NeighbVtx 𝑁))))
11 ax-1 6 . . . . . . 7 (𝑋 ∈ (𝐺 NeighbVtx 𝑁) → (𝑋𝑁𝑋 ∈ (𝐺 NeighbVtx 𝑁)))
1211a1i 11 . . . . . 6 (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ∈ (𝐺 NeighbVtx 𝑁) → (𝑋𝑁𝑋 ∈ (𝐺 NeighbVtx 𝑁))))
1310, 12jaod 859 . . . . 5 (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → ((𝑋 ∈ {𝑁} ∨ 𝑋 ∈ (𝐺 NeighbVtx 𝑁)) → (𝑋𝑁𝑋 ∈ (𝐺 NeighbVtx 𝑁))))
146, 13biimtrid 242 . . . 4 (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ∈ ({𝑁} ∪ (𝐺 NeighbVtx 𝑁)) → (𝑋𝑁𝑋 ∈ (𝐺 NeighbVtx 𝑁))))
155, 14sylbid 240 . . 3 (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋𝑁𝑋 ∈ (𝐺 NeighbVtx 𝑁))))
1615pm2.43i 52 . 2 (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋𝑁𝑋 ∈ (𝐺 NeighbVtx 𝑁)))
1716imp 406 1 ((𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) ∧ 𝑋𝑁) → 𝑋 ∈ (𝐺 NeighbVtx 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928  cun 3895  {csn 4573  cfv 6481  (class class class)co 7346  Vtxcvtx 28974   NeighbVtx cnbgr 29310   ClNeighbVtx cclnbgr 47917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-nbgr 29311  df-clnbgr 47918
This theorem is referenced by:  isubgr3stgrlem6  48070
  Copyright terms: Public domain W3C validator