| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elclnbgrelnbgr | Structured version Visualization version GIF version | ||
| Description: An element of the closed neighborhood of a vertex which is not the vertex itself is an element of the open neighborhood of the vertex. (Contributed by AV, 24-Sep-2025.) |
| Ref | Expression |
|---|---|
| elclnbgrelnbgr | ⊢ ((𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) ∧ 𝑋 ≠ 𝑁) → 𝑋 ∈ (𝐺 NeighbVtx 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . . . . 7 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | 1 | clnbgrcl 47920 | . . . . . 6 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → 𝑁 ∈ (Vtx‘𝐺)) |
| 3 | 1 | dfclnbgr4 47923 | . . . . . 6 ⊢ (𝑁 ∈ (Vtx‘𝐺) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁))) |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁))) |
| 5 | 4 | eleq2d 2817 | . . . 4 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) ↔ 𝑋 ∈ ({𝑁} ∪ (𝐺 NeighbVtx 𝑁)))) |
| 6 | elun 4100 | . . . . 5 ⊢ (𝑋 ∈ ({𝑁} ∪ (𝐺 NeighbVtx 𝑁)) ↔ (𝑋 ∈ {𝑁} ∨ 𝑋 ∈ (𝐺 NeighbVtx 𝑁))) | |
| 7 | elsng 4587 | . . . . . . 7 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ∈ {𝑁} ↔ 𝑋 = 𝑁)) | |
| 8 | eqneqall 2939 | . . . . . . . 8 ⊢ (𝑋 = 𝑁 → (𝑋 ≠ 𝑁 → 𝑋 ∈ (𝐺 NeighbVtx 𝑁))) | |
| 9 | 8 | a1i 11 | . . . . . . 7 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 = 𝑁 → (𝑋 ≠ 𝑁 → 𝑋 ∈ (𝐺 NeighbVtx 𝑁)))) |
| 10 | 7, 9 | sylbid 240 | . . . . . 6 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ∈ {𝑁} → (𝑋 ≠ 𝑁 → 𝑋 ∈ (𝐺 NeighbVtx 𝑁)))) |
| 11 | ax-1 6 | . . . . . . 7 ⊢ (𝑋 ∈ (𝐺 NeighbVtx 𝑁) → (𝑋 ≠ 𝑁 → 𝑋 ∈ (𝐺 NeighbVtx 𝑁))) | |
| 12 | 11 | a1i 11 | . . . . . 6 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ∈ (𝐺 NeighbVtx 𝑁) → (𝑋 ≠ 𝑁 → 𝑋 ∈ (𝐺 NeighbVtx 𝑁)))) |
| 13 | 10, 12 | jaod 859 | . . . . 5 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → ((𝑋 ∈ {𝑁} ∨ 𝑋 ∈ (𝐺 NeighbVtx 𝑁)) → (𝑋 ≠ 𝑁 → 𝑋 ∈ (𝐺 NeighbVtx 𝑁)))) |
| 14 | 6, 13 | biimtrid 242 | . . . 4 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ∈ ({𝑁} ∪ (𝐺 NeighbVtx 𝑁)) → (𝑋 ≠ 𝑁 → 𝑋 ∈ (𝐺 NeighbVtx 𝑁)))) |
| 15 | 5, 14 | sylbid 240 | . . 3 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ≠ 𝑁 → 𝑋 ∈ (𝐺 NeighbVtx 𝑁)))) |
| 16 | 15 | pm2.43i 52 | . 2 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ≠ 𝑁 → 𝑋 ∈ (𝐺 NeighbVtx 𝑁))) |
| 17 | 16 | imp 406 | 1 ⊢ ((𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) ∧ 𝑋 ≠ 𝑁) → 𝑋 ∈ (𝐺 NeighbVtx 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∪ cun 3895 {csn 4573 ‘cfv 6481 (class class class)co 7346 Vtxcvtx 28974 NeighbVtx cnbgr 29310 ClNeighbVtx cclnbgr 47917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-nbgr 29311 df-clnbgr 47918 |
| This theorem is referenced by: isubgr3stgrlem6 48070 |
| Copyright terms: Public domain | W3C validator |