| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elclnbgrelnbgr | Structured version Visualization version GIF version | ||
| Description: An element of the closed neighborhood of a vertex which is not the vertex itself is an element of the open neighborhood of the vertex. (Contributed by AV, 24-Sep-2025.) |
| Ref | Expression |
|---|---|
| elclnbgrelnbgr | ⊢ ((𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) ∧ 𝑋 ≠ 𝑁) → 𝑋 ∈ (𝐺 NeighbVtx 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . . . 7 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | 1 | clnbgrcl 47815 | . . . . . 6 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → 𝑁 ∈ (Vtx‘𝐺)) |
| 3 | 1 | dfclnbgr4 47818 | . . . . . 6 ⊢ (𝑁 ∈ (Vtx‘𝐺) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁))) |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁))) |
| 5 | 4 | eleq2d 2814 | . . . 4 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) ↔ 𝑋 ∈ ({𝑁} ∪ (𝐺 NeighbVtx 𝑁)))) |
| 6 | elun 4104 | . . . . 5 ⊢ (𝑋 ∈ ({𝑁} ∪ (𝐺 NeighbVtx 𝑁)) ↔ (𝑋 ∈ {𝑁} ∨ 𝑋 ∈ (𝐺 NeighbVtx 𝑁))) | |
| 7 | elsng 4591 | . . . . . . 7 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ∈ {𝑁} ↔ 𝑋 = 𝑁)) | |
| 8 | eqneqall 2936 | . . . . . . . 8 ⊢ (𝑋 = 𝑁 → (𝑋 ≠ 𝑁 → 𝑋 ∈ (𝐺 NeighbVtx 𝑁))) | |
| 9 | 8 | a1i 11 | . . . . . . 7 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 = 𝑁 → (𝑋 ≠ 𝑁 → 𝑋 ∈ (𝐺 NeighbVtx 𝑁)))) |
| 10 | 7, 9 | sylbid 240 | . . . . . 6 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ∈ {𝑁} → (𝑋 ≠ 𝑁 → 𝑋 ∈ (𝐺 NeighbVtx 𝑁)))) |
| 11 | ax-1 6 | . . . . . . 7 ⊢ (𝑋 ∈ (𝐺 NeighbVtx 𝑁) → (𝑋 ≠ 𝑁 → 𝑋 ∈ (𝐺 NeighbVtx 𝑁))) | |
| 12 | 11 | a1i 11 | . . . . . 6 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ∈ (𝐺 NeighbVtx 𝑁) → (𝑋 ≠ 𝑁 → 𝑋 ∈ (𝐺 NeighbVtx 𝑁)))) |
| 13 | 10, 12 | jaod 859 | . . . . 5 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → ((𝑋 ∈ {𝑁} ∨ 𝑋 ∈ (𝐺 NeighbVtx 𝑁)) → (𝑋 ≠ 𝑁 → 𝑋 ∈ (𝐺 NeighbVtx 𝑁)))) |
| 14 | 6, 13 | biimtrid 242 | . . . 4 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ∈ ({𝑁} ∪ (𝐺 NeighbVtx 𝑁)) → (𝑋 ≠ 𝑁 → 𝑋 ∈ (𝐺 NeighbVtx 𝑁)))) |
| 15 | 5, 14 | sylbid 240 | . . 3 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ≠ 𝑁 → 𝑋 ∈ (𝐺 NeighbVtx 𝑁)))) |
| 16 | 15 | pm2.43i 52 | . 2 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ≠ 𝑁 → 𝑋 ∈ (𝐺 NeighbVtx 𝑁))) |
| 17 | 16 | imp 406 | 1 ⊢ ((𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) ∧ 𝑋 ≠ 𝑁) → 𝑋 ∈ (𝐺 NeighbVtx 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∪ cun 3901 {csn 4577 ‘cfv 6482 (class class class)co 7349 Vtxcvtx 28941 NeighbVtx cnbgr 29277 ClNeighbVtx cclnbgr 47812 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-nbgr 29278 df-clnbgr 47813 |
| This theorem is referenced by: isubgr3stgrlem6 47965 |
| Copyright terms: Public domain | W3C validator |