![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elclnbgrelnbgr | Structured version Visualization version GIF version |
Description: An element of the closed neighborhood of a vertex which is not the vertex itself is an element of the open neighborhood of the vertex. (Contributed by AV, 24-Sep-2025.) |
Ref | Expression |
---|---|
elclnbgrelnbgr | ⊢ ((𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) ∧ 𝑋 ≠ 𝑁) → 𝑋 ∈ (𝐺 NeighbVtx 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2734 | . . . . . . 7 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | 1 | clnbgrcl 47745 | . . . . . 6 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → 𝑁 ∈ (Vtx‘𝐺)) |
3 | 1 | dfclnbgr4 47748 | . . . . . 6 ⊢ (𝑁 ∈ (Vtx‘𝐺) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁))) |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁))) |
5 | 4 | eleq2d 2824 | . . . 4 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) ↔ 𝑋 ∈ ({𝑁} ∪ (𝐺 NeighbVtx 𝑁)))) |
6 | elun 4162 | . . . . 5 ⊢ (𝑋 ∈ ({𝑁} ∪ (𝐺 NeighbVtx 𝑁)) ↔ (𝑋 ∈ {𝑁} ∨ 𝑋 ∈ (𝐺 NeighbVtx 𝑁))) | |
7 | elsng 4644 | . . . . . . 7 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ∈ {𝑁} ↔ 𝑋 = 𝑁)) | |
8 | eqneqall 2948 | . . . . . . . 8 ⊢ (𝑋 = 𝑁 → (𝑋 ≠ 𝑁 → 𝑋 ∈ (𝐺 NeighbVtx 𝑁))) | |
9 | 8 | a1i 11 | . . . . . . 7 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 = 𝑁 → (𝑋 ≠ 𝑁 → 𝑋 ∈ (𝐺 NeighbVtx 𝑁)))) |
10 | 7, 9 | sylbid 240 | . . . . . 6 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ∈ {𝑁} → (𝑋 ≠ 𝑁 → 𝑋 ∈ (𝐺 NeighbVtx 𝑁)))) |
11 | ax-1 6 | . . . . . . 7 ⊢ (𝑋 ∈ (𝐺 NeighbVtx 𝑁) → (𝑋 ≠ 𝑁 → 𝑋 ∈ (𝐺 NeighbVtx 𝑁))) | |
12 | 11 | a1i 11 | . . . . . 6 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ∈ (𝐺 NeighbVtx 𝑁) → (𝑋 ≠ 𝑁 → 𝑋 ∈ (𝐺 NeighbVtx 𝑁)))) |
13 | 10, 12 | jaod 859 | . . . . 5 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → ((𝑋 ∈ {𝑁} ∨ 𝑋 ∈ (𝐺 NeighbVtx 𝑁)) → (𝑋 ≠ 𝑁 → 𝑋 ∈ (𝐺 NeighbVtx 𝑁)))) |
14 | 6, 13 | biimtrid 242 | . . . 4 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ∈ ({𝑁} ∪ (𝐺 NeighbVtx 𝑁)) → (𝑋 ≠ 𝑁 → 𝑋 ∈ (𝐺 NeighbVtx 𝑁)))) |
15 | 5, 14 | sylbid 240 | . . 3 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ≠ 𝑁 → 𝑋 ∈ (𝐺 NeighbVtx 𝑁)))) |
16 | 15 | pm2.43i 52 | . 2 ⊢ (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ≠ 𝑁 → 𝑋 ∈ (𝐺 NeighbVtx 𝑁))) |
17 | 16 | imp 406 | 1 ⊢ ((𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) ∧ 𝑋 ≠ 𝑁) → 𝑋 ∈ (𝐺 NeighbVtx 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 ∪ cun 3960 {csn 4630 ‘cfv 6562 (class class class)co 7430 Vtxcvtx 29027 NeighbVtx cnbgr 29363 ClNeighbVtx cclnbgr 47742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-1st 8012 df-2nd 8013 df-nbgr 29364 df-clnbgr 47743 |
This theorem is referenced by: isubgr3stgrlem6 47873 |
Copyright terms: Public domain | W3C validator |