Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elclnbgrelnbgr Structured version   Visualization version   GIF version

Theorem elclnbgrelnbgr 47785
Description: An element of the closed neighborhood of a vertex which is not the vertex itself is an element of the open neighborhood of the vertex. (Contributed by AV, 24-Sep-2025.)
Assertion
Ref Expression
elclnbgrelnbgr ((𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) ∧ 𝑋𝑁) → 𝑋 ∈ (𝐺 NeighbVtx 𝑁))

Proof of Theorem elclnbgrelnbgr
StepHypRef Expression
1 eqid 2734 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
21clnbgrcl 47781 . . . . . 6 (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → 𝑁 ∈ (Vtx‘𝐺))
31dfclnbgr4 47784 . . . . . 6 (𝑁 ∈ (Vtx‘𝐺) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁)))
42, 3syl 17 . . . . 5 (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁)))
54eleq2d 2819 . . . 4 (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) ↔ 𝑋 ∈ ({𝑁} ∪ (𝐺 NeighbVtx 𝑁))))
6 elun 4133 . . . . 5 (𝑋 ∈ ({𝑁} ∪ (𝐺 NeighbVtx 𝑁)) ↔ (𝑋 ∈ {𝑁} ∨ 𝑋 ∈ (𝐺 NeighbVtx 𝑁)))
7 elsng 4620 . . . . . . 7 (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ∈ {𝑁} ↔ 𝑋 = 𝑁))
8 eqneqall 2942 . . . . . . . 8 (𝑋 = 𝑁 → (𝑋𝑁𝑋 ∈ (𝐺 NeighbVtx 𝑁)))
98a1i 11 . . . . . . 7 (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 = 𝑁 → (𝑋𝑁𝑋 ∈ (𝐺 NeighbVtx 𝑁))))
107, 9sylbid 240 . . . . . 6 (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ∈ {𝑁} → (𝑋𝑁𝑋 ∈ (𝐺 NeighbVtx 𝑁))))
11 ax-1 6 . . . . . . 7 (𝑋 ∈ (𝐺 NeighbVtx 𝑁) → (𝑋𝑁𝑋 ∈ (𝐺 NeighbVtx 𝑁)))
1211a1i 11 . . . . . 6 (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ∈ (𝐺 NeighbVtx 𝑁) → (𝑋𝑁𝑋 ∈ (𝐺 NeighbVtx 𝑁))))
1310, 12jaod 859 . . . . 5 (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → ((𝑋 ∈ {𝑁} ∨ 𝑋 ∈ (𝐺 NeighbVtx 𝑁)) → (𝑋𝑁𝑋 ∈ (𝐺 NeighbVtx 𝑁))))
146, 13biimtrid 242 . . . 4 (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ∈ ({𝑁} ∪ (𝐺 NeighbVtx 𝑁)) → (𝑋𝑁𝑋 ∈ (𝐺 NeighbVtx 𝑁))))
155, 14sylbid 240 . . 3 (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋𝑁𝑋 ∈ (𝐺 NeighbVtx 𝑁))))
1615pm2.43i 52 . 2 (𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝑋𝑁𝑋 ∈ (𝐺 NeighbVtx 𝑁)))
1716imp 406 1 ((𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) ∧ 𝑋𝑁) → 𝑋 ∈ (𝐺 NeighbVtx 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1539  wcel 2107  wne 2931  cun 3929  {csn 4606  cfv 6541  (class class class)co 7413  Vtxcvtx 28942   NeighbVtx cnbgr 29278   ClNeighbVtx cclnbgr 47778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-nbgr 29279  df-clnbgr 47779
This theorem is referenced by:  isubgr3stgrlem6  47911
  Copyright terms: Public domain W3C validator