Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgr3stgrlem6 Structured version   Visualization version   GIF version

Theorem isubgr3stgrlem6 48070
Description: Lemma 6 for isubgr3stgr 48074. (Contributed by AV, 24-Sep-2025.)
Hypotheses
Ref Expression
isubgr3stgr.v 𝑉 = (Vtx‘𝐺)
isubgr3stgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
isubgr3stgr.c 𝐶 = (𝐺 ClNeighbVtx 𝑋)
isubgr3stgr.n 𝑁 ∈ ℕ0
isubgr3stgr.s 𝑆 = (StarGr‘𝑁)
isubgr3stgr.w 𝑊 = (Vtx‘𝑆)
isubgr3stgr.e 𝐸 = (Edg‘𝐺)
isubgr3stgr.i 𝐼 = (Edg‘(𝐺 ISubGr 𝐶))
isubgr3stgr.h 𝐻 = (𝑖𝐼 ↦ (𝐹𝑖))
Assertion
Ref Expression
isubgr3stgrlem6 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → 𝐻:𝐼⟶(Edg‘(StarGr‘𝑁)))
Distinct variable groups:   𝐶,𝑖   𝑖,𝐹   𝑖,𝐼   𝑖,𝑊   𝑖,𝐸,𝑥,𝑦   𝑖,𝐺   𝑖,𝑁   𝑈,𝑖,𝑥,𝑦   𝑖,𝑉   𝑖,𝑋
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑆(𝑥,𝑦,𝑖)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦,𝑖)   𝐼(𝑥,𝑦)   𝑁(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem isubgr3stgrlem6
Dummy variables 𝑧 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 usgruhgr 29164 . . . . . 6 (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph)
21adantr 480 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → 𝐺 ∈ UHGraph)
32adantr 480 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → 𝐺 ∈ UHGraph)
4 isubgr3stgr.c . . . . . 6 𝐶 = (𝐺 ClNeighbVtx 𝑋)
5 isubgr3stgr.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
65clnbgrssvtx 47930 . . . . . 6 (𝐺 ClNeighbVtx 𝑋) ⊆ 𝑉
74, 6eqsstri 3976 . . . . 5 𝐶𝑉
87a1i 11 . . . 4 ((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) → 𝐶𝑉)
9 isubgr3stgr.e . . . . 5 𝐸 = (Edg‘𝐺)
10 eqid 2731 . . . . 5 (𝐺 ISubGr 𝐶) = (𝐺 ISubGr 𝐶)
11 isubgr3stgr.i . . . . 5 𝐼 = (Edg‘(𝐺 ISubGr 𝐶))
125, 9, 10, 11isubgredg 47965 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐶𝑉) → (𝑖𝐼 ↔ (𝑖𝐸𝑖𝐶)))
133, 8, 12syl2an 596 . . 3 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → (𝑖𝐼 ↔ (𝑖𝐸𝑖𝐶)))
14 f1of 6763 . . . . . . . 8 (𝐹:𝐶1-1-onto𝑊𝐹:𝐶𝑊)
15 isubgr3stgr.w . . . . . . . . . . 11 𝑊 = (Vtx‘𝑆)
16 isubgr3stgr.s . . . . . . . . . . . 12 𝑆 = (StarGr‘𝑁)
1716fveq2i 6825 . . . . . . . . . . 11 (Vtx‘𝑆) = (Vtx‘(StarGr‘𝑁))
18 isubgr3stgr.n . . . . . . . . . . . 12 𝑁 ∈ ℕ0
19 stgrvtx 48053 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → (Vtx‘(StarGr‘𝑁)) = (0...𝑁))
2018, 19ax-mp 5 . . . . . . . . . . 11 (Vtx‘(StarGr‘𝑁)) = (0...𝑁)
2115, 17, 203eqtri 2758 . . . . . . . . . 10 𝑊 = (0...𝑁)
2221eqimssi 3990 . . . . . . . . 9 𝑊 ⊆ (0...𝑁)
2322a1i 11 . . . . . . . 8 (𝐹:𝐶1-1-onto𝑊𝑊 ⊆ (0...𝑁))
2414, 23fssd 6668 . . . . . . 7 (𝐹:𝐶1-1-onto𝑊𝐹:𝐶⟶(0...𝑁))
2524ad2antrl 728 . . . . . 6 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → 𝐹:𝐶⟶(0...𝑁))
2625adantr 480 . . . . 5 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑖𝐸𝑖𝐶)) → 𝐹:𝐶⟶(0...𝑁))
2726fimassd 6672 . . . 4 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑖𝐸𝑖𝐶)) → (𝐹𝑖) ⊆ (0...𝑁))
28 simplll 774 . . . . . 6 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → 𝐺 ∈ USGraph)
29 simpl 482 . . . . . 6 ((𝑖𝐸𝑖𝐶) → 𝑖𝐸)
305, 9usgredg 29177 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑖𝐸) → ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑖 = {𝑎, 𝑏}))
3128, 29, 30syl2an 596 . . . . 5 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑖𝐸𝑖𝐶)) → ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑖 = {𝑎, 𝑏}))
32 vex 3440 . . . . . . . . . . . . . . . . 17 𝑎 ∈ V
33 vex 3440 . . . . . . . . . . . . . . . . 17 𝑏 ∈ V
3432, 33prss 4769 . . . . . . . . . . . . . . . 16 ((𝑎𝐶𝑏𝐶) ↔ {𝑎, 𝑏} ⊆ 𝐶)
35 elclnbgrelnbgr 47924 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑎 ∈ (𝐺 ClNeighbVtx 𝑋) ∧ 𝑎𝑋) → 𝑎 ∈ (𝐺 NeighbVtx 𝑋))
3635expcom 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑎𝑋 → (𝑎 ∈ (𝐺 ClNeighbVtx 𝑋) → 𝑎 ∈ (𝐺 NeighbVtx 𝑋)))
374eleq2i 2823 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑎𝐶𝑎 ∈ (𝐺 ClNeighbVtx 𝑋))
38 isubgr3stgr.u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑈 = (𝐺 NeighbVtx 𝑋)
3938eleq2i 2823 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑎𝑈𝑎 ∈ (𝐺 NeighbVtx 𝑋))
4036, 37, 393imtr4g 296 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎𝑋 → (𝑎𝐶𝑎𝑈))
41 elclnbgrelnbgr 47924 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑏 ∈ (𝐺 ClNeighbVtx 𝑋) ∧ 𝑏𝑋) → 𝑏 ∈ (𝐺 NeighbVtx 𝑋))
4241expcom 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑏𝑋 → (𝑏 ∈ (𝐺 ClNeighbVtx 𝑋) → 𝑏 ∈ (𝐺 NeighbVtx 𝑋)))
434eleq2i 2823 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑏𝐶𝑏 ∈ (𝐺 ClNeighbVtx 𝑋))
4438eleq2i 2823 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑏𝑈𝑏 ∈ (𝐺 NeighbVtx 𝑋))
4542, 43, 443imtr4g 296 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑏𝑋 → (𝑏𝐶𝑏𝑈))
4640, 45im2anan9r 621 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑏𝑋𝑎𝑋) → ((𝑎𝐶𝑏𝐶) → (𝑎𝑈𝑏𝑈)))
4746imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑏𝑋𝑎𝑋) ∧ (𝑎𝐶𝑏𝐶)) → (𝑎𝑈𝑏𝑈))
48473adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑏𝑋𝑎𝑋) ∧ (𝑎𝐶𝑏𝐶) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) → (𝑎𝑈𝑏𝑈))
49 preq1 4683 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = 𝑎 → {𝑥, 𝑦} = {𝑎, 𝑦})
50 eqidd 2732 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = 𝑎𝐸 = 𝐸)
5149, 50neleq12d 3037 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = 𝑎 → ({𝑥, 𝑦} ∉ 𝐸 ↔ {𝑎, 𝑦} ∉ 𝐸))
52 preq2 4684 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = 𝑏 → {𝑎, 𝑦} = {𝑎, 𝑏})
53 eqidd 2732 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = 𝑏𝐸 = 𝐸)
5452, 53neleq12d 3037 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 = 𝑏 → ({𝑎, 𝑦} ∉ 𝐸 ↔ {𝑎, 𝑏} ∉ 𝐸))
5551, 54rspc2v 3583 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎𝑈𝑏𝑈) → (∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸 → {𝑎, 𝑏} ∉ 𝐸))
5648, 55syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑏𝑋𝑎𝑋) ∧ (𝑎𝐶𝑏𝐶) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) → (∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸 → {𝑎, 𝑏} ∉ 𝐸))
57 pm2.24nel 3045 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ({𝑎, 𝑏} ∈ 𝐸 → ({𝑎, 𝑏} ∉ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
5857adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸) → ({𝑎, 𝑏} ∉ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
59583ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑏𝑋𝑎𝑋) ∧ (𝑎𝐶𝑏𝐶) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) → ({𝑎, 𝑏} ∉ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
6056, 59syld 47 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑏𝑋𝑎𝑋) ∧ (𝑎𝐶𝑏𝐶) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) → (∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
61603exp 1119 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑏𝑋𝑎𝑋) → ((𝑎𝐶𝑏𝐶) → ((𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸) → (∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))))
6261com24 95 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑏𝑋𝑎𝑋) → (∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸 → ((𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸) → ((𝑎𝐶𝑏𝐶) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))))
6362adantld 490 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏𝑋𝑎𝑋) → (((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸) → ((𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸) → ((𝑎𝐶𝑏𝐶) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))))
6463adantld 490 . . . . . . . . . . . . . . . . . . . 20 ((𝑏𝑋𝑎𝑋) → (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → ((𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸) → ((𝑎𝐶𝑏𝐶) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))))
6564adantrd 491 . . . . . . . . . . . . . . . . . . 19 ((𝑏𝑋𝑎𝑋) → ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → ((𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸) → ((𝑎𝐶𝑏𝐶) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))))
6665imp4c 423 . . . . . . . . . . . . . . . . . 18 ((𝑏𝑋𝑎𝑋) → ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
67 simpl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → 𝑏 = 𝑋)
68 simpllr 775 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶)) → (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0))
6968adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0))
70 simplrl 776 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶)) → 𝑎𝑏)
7170necomd 2983 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶)) → 𝑏𝑎)
7271adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → 𝑏𝑎)
73 simprrr 781 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → 𝑏𝐶)
74 simprrl 780 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → 𝑎𝐶)
755, 38, 4, 18, 16, 15, 9isubgr3stgrlem4 48068 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 = 𝑋 ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑏𝑎𝑏𝐶𝑎𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑏, 𝑎}) = {0, 𝑧})
7667, 69, 72, 73, 74, 75syl113anc 1384 . . . . . . . . . . . . . . . . . . . 20 ((𝑏 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑏, 𝑎}) = {0, 𝑧})
77 prcom 4682 . . . . . . . . . . . . . . . . . . . . . . 23 {𝑎, 𝑏} = {𝑏, 𝑎}
7877imaeq2i 6006 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹 “ {𝑎, 𝑏}) = (𝐹 “ {𝑏, 𝑎})
7978eqeq1i 2736 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 “ {𝑎, 𝑏}) = {0, 𝑧} ↔ (𝐹 “ {𝑏, 𝑎}) = {0, 𝑧})
8079rexbii 3079 . . . . . . . . . . . . . . . . . . . 20 (∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧} ↔ ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑏, 𝑎}) = {0, 𝑧})
8176, 80sylibr 234 . . . . . . . . . . . . . . . . . . 19 ((𝑏 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})
8281ex 412 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑋 → ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
83 simpl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → 𝑎 = 𝑋)
8468adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0))
8570adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → 𝑎𝑏)
86 simprrl 780 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → 𝑎𝐶)
87 simprrr 781 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → 𝑏𝐶)
885, 38, 4, 18, 16, 15, 9isubgr3stgrlem4 48068 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 = 𝑋 ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑎𝑏𝑎𝐶𝑏𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})
8983, 84, 85, 86, 87, 88syl113anc 1384 . . . . . . . . . . . . . . . . . . 19 ((𝑎 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})
9089ex 412 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑋 → ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
9166, 82, 90pm2.61iine 3018 . . . . . . . . . . . . . . . . 17 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})
9291ex 412 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) → ((𝑎𝐶𝑏𝐶) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
9334, 92biimtrrid 243 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) → ({𝑎, 𝑏} ⊆ 𝐶 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
9493exp32 420 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → (𝑎𝑏 → ({𝑎, 𝑏} ∈ 𝐸 → ({𝑎, 𝑏} ⊆ 𝐶 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))))
9594adantrd 491 . . . . . . . . . . . . 13 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → ((𝑎𝑏𝑖 = {𝑎, 𝑏}) → ({𝑎, 𝑏} ∈ 𝐸 → ({𝑎, 𝑏} ⊆ 𝐶 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))))
9695imp 406 . . . . . . . . . . . 12 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏𝑖 = {𝑎, 𝑏})) → ({𝑎, 𝑏} ∈ 𝐸 → ({𝑎, 𝑏} ⊆ 𝐶 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})))
9796com23 86 . . . . . . . . . . 11 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏𝑖 = {𝑎, 𝑏})) → ({𝑎, 𝑏} ⊆ 𝐶 → ({𝑎, 𝑏} ∈ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})))
98 sseq1 3955 . . . . . . . . . . . . . 14 (𝑖 = {𝑎, 𝑏} → (𝑖𝐶 ↔ {𝑎, 𝑏} ⊆ 𝐶))
99 eleq1 2819 . . . . . . . . . . . . . . 15 (𝑖 = {𝑎, 𝑏} → (𝑖𝐸 ↔ {𝑎, 𝑏} ∈ 𝐸))
100 imaeq2 6004 . . . . . . . . . . . . . . . . 17 (𝑖 = {𝑎, 𝑏} → (𝐹𝑖) = (𝐹 “ {𝑎, 𝑏}))
101100eqeq1d 2733 . . . . . . . . . . . . . . . 16 (𝑖 = {𝑎, 𝑏} → ((𝐹𝑖) = {0, 𝑧} ↔ (𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
102101rexbidv 3156 . . . . . . . . . . . . . . 15 (𝑖 = {𝑎, 𝑏} → (∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧} ↔ ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
10399, 102imbi12d 344 . . . . . . . . . . . . . 14 (𝑖 = {𝑎, 𝑏} → ((𝑖𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧}) ↔ ({𝑎, 𝑏} ∈ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})))
10498, 103imbi12d 344 . . . . . . . . . . . . 13 (𝑖 = {𝑎, 𝑏} → ((𝑖𝐶 → (𝑖𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧})) ↔ ({𝑎, 𝑏} ⊆ 𝐶 → ({𝑎, 𝑏} ∈ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))))
105104adantl 481 . . . . . . . . . . . 12 ((𝑎𝑏𝑖 = {𝑎, 𝑏}) → ((𝑖𝐶 → (𝑖𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧})) ↔ ({𝑎, 𝑏} ⊆ 𝐶 → ({𝑎, 𝑏} ∈ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))))
106105adantl 481 . . . . . . . . . . 11 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏𝑖 = {𝑎, 𝑏})) → ((𝑖𝐶 → (𝑖𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧})) ↔ ({𝑎, 𝑏} ⊆ 𝐶 → ({𝑎, 𝑏} ∈ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))))
10797, 106mpbird 257 . . . . . . . . . 10 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏𝑖 = {𝑎, 𝑏})) → (𝑖𝐶 → (𝑖𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧})))
108107ex 412 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → ((𝑎𝑏𝑖 = {𝑎, 𝑏}) → (𝑖𝐶 → (𝑖𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧}))))
109108com24 95 . . . . . . . 8 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → (𝑖𝐸 → (𝑖𝐶 → ((𝑎𝑏𝑖 = {𝑎, 𝑏}) → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧}))))
110109imp32 418 . . . . . . 7 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑖𝐸𝑖𝐶)) → ((𝑎𝑏𝑖 = {𝑎, 𝑏}) → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧}))
111110a1d 25 . . . . . 6 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑖𝐸𝑖𝐶)) → ((𝑎𝑉𝑏𝑉) → ((𝑎𝑏𝑖 = {𝑎, 𝑏}) → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧})))
112111rexlimdvv 3188 . . . . 5 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑖𝐸𝑖𝐶)) → (∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑖 = {𝑎, 𝑏}) → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧}))
11331, 112mpd 15 . . . 4 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑖𝐸𝑖𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧})
114 stgredgel 48056 . . . . 5 (𝑁 ∈ ℕ0 → ((𝐹𝑖) ∈ (Edg‘(StarGr‘𝑁)) ↔ ((𝐹𝑖) ⊆ (0...𝑁) ∧ ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧})))
11518, 114ax-mp 5 . . . 4 ((𝐹𝑖) ∈ (Edg‘(StarGr‘𝑁)) ↔ ((𝐹𝑖) ⊆ (0...𝑁) ∧ ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧}))
11627, 113, 115sylanbrc 583 . . 3 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑖𝐸𝑖𝐶)) → (𝐹𝑖) ∈ (Edg‘(StarGr‘𝑁)))
11713, 116sylbida 592 . 2 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑖𝐼) → (𝐹𝑖) ∈ (Edg‘(StarGr‘𝑁)))
118 isubgr3stgr.h . 2 𝐻 = (𝑖𝐼 ↦ (𝐹𝑖))
119117, 118fmptd 7047 1 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → 𝐻:𝐼⟶(Edg‘(StarGr‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wnel 3032  wral 3047  wrex 3056  wss 3897  {cpr 4575  cmpt 5170  cima 5617  wf 6477  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  0cc0 11006  1c1 11007  0cn0 12381  ...cfz 13407  chash 14237  Vtxcvtx 28974  Edgcedg 29025  UHGraphcuhgr 29034  USGraphcusgr 29127   NeighbVtx cnbgr 29310   ClNeighbVtx cclnbgr 47917   ISubGr cisubgr 47959  StarGrcstgr 48050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-xnn0 12455  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-hash 14238  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-edgf 28967  df-vtx 28976  df-iedg 28977  df-edg 29026  df-uhgr 29036  df-upgr 29060  df-umgr 29061  df-uspgr 29128  df-usgr 29129  df-nbgr 29311  df-clnbgr 47918  df-isubgr 47960  df-stgr 48051
This theorem is referenced by:  isubgr3stgrlem8  48072
  Copyright terms: Public domain W3C validator