Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgr3stgrlem6 Structured version   Visualization version   GIF version

Theorem isubgr3stgrlem6 47963
Description: Lemma 6 for isubgr3stgr 47967. (Contributed by AV, 24-Sep-2025.)
Hypotheses
Ref Expression
isubgr3stgr.v 𝑉 = (Vtx‘𝐺)
isubgr3stgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
isubgr3stgr.c 𝐶 = (𝐺 ClNeighbVtx 𝑋)
isubgr3stgr.n 𝑁 ∈ ℕ0
isubgr3stgr.s 𝑆 = (StarGr‘𝑁)
isubgr3stgr.w 𝑊 = (Vtx‘𝑆)
isubgr3stgr.e 𝐸 = (Edg‘𝐺)
isubgr3stgr.i 𝐼 = (Edg‘(𝐺 ISubGr 𝐶))
isubgr3stgr.h 𝐻 = (𝑖𝐼 ↦ (𝐹𝑖))
Assertion
Ref Expression
isubgr3stgrlem6 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → 𝐻:𝐼⟶(Edg‘(StarGr‘𝑁)))
Distinct variable groups:   𝐶,𝑖   𝑖,𝐹   𝑖,𝐼   𝑖,𝑊   𝑖,𝐸,𝑥,𝑦   𝑖,𝐺   𝑖,𝑁   𝑈,𝑖,𝑥,𝑦   𝑖,𝑉   𝑖,𝑋
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑆(𝑥,𝑦,𝑖)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦,𝑖)   𝐼(𝑥,𝑦)   𝑁(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem isubgr3stgrlem6
Dummy variables 𝑧 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 usgruhgr 29166 . . . . . 6 (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph)
21adantr 480 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → 𝐺 ∈ UHGraph)
32adantr 480 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → 𝐺 ∈ UHGraph)
4 isubgr3stgr.c . . . . . 6 𝐶 = (𝐺 ClNeighbVtx 𝑋)
5 isubgr3stgr.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
65clnbgrssvtx 47825 . . . . . 6 (𝐺 ClNeighbVtx 𝑋) ⊆ 𝑉
74, 6eqsstri 3990 . . . . 5 𝐶𝑉
87a1i 11 . . . 4 ((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) → 𝐶𝑉)
9 isubgr3stgr.e . . . . 5 𝐸 = (Edg‘𝐺)
10 eqid 2729 . . . . 5 (𝐺 ISubGr 𝐶) = (𝐺 ISubGr 𝐶)
11 isubgr3stgr.i . . . . 5 𝐼 = (Edg‘(𝐺 ISubGr 𝐶))
125, 9, 10, 11isubgredg 47859 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐶𝑉) → (𝑖𝐼 ↔ (𝑖𝐸𝑖𝐶)))
133, 8, 12syl2an 596 . . 3 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → (𝑖𝐼 ↔ (𝑖𝐸𝑖𝐶)))
14 f1of 6782 . . . . . . . 8 (𝐹:𝐶1-1-onto𝑊𝐹:𝐶𝑊)
15 isubgr3stgr.w . . . . . . . . . . 11 𝑊 = (Vtx‘𝑆)
16 isubgr3stgr.s . . . . . . . . . . . 12 𝑆 = (StarGr‘𝑁)
1716fveq2i 6843 . . . . . . . . . . 11 (Vtx‘𝑆) = (Vtx‘(StarGr‘𝑁))
18 isubgr3stgr.n . . . . . . . . . . . 12 𝑁 ∈ ℕ0
19 stgrvtx 47946 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → (Vtx‘(StarGr‘𝑁)) = (0...𝑁))
2018, 19ax-mp 5 . . . . . . . . . . 11 (Vtx‘(StarGr‘𝑁)) = (0...𝑁)
2115, 17, 203eqtri 2756 . . . . . . . . . 10 𝑊 = (0...𝑁)
2221eqimssi 4004 . . . . . . . . 9 𝑊 ⊆ (0...𝑁)
2322a1i 11 . . . . . . . 8 (𝐹:𝐶1-1-onto𝑊𝑊 ⊆ (0...𝑁))
2414, 23fssd 6687 . . . . . . 7 (𝐹:𝐶1-1-onto𝑊𝐹:𝐶⟶(0...𝑁))
2524ad2antrl 728 . . . . . 6 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → 𝐹:𝐶⟶(0...𝑁))
2625adantr 480 . . . . 5 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑖𝐸𝑖𝐶)) → 𝐹:𝐶⟶(0...𝑁))
2726fimassd 6691 . . . 4 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑖𝐸𝑖𝐶)) → (𝐹𝑖) ⊆ (0...𝑁))
28 simplll 774 . . . . . 6 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → 𝐺 ∈ USGraph)
29 simpl 482 . . . . . 6 ((𝑖𝐸𝑖𝐶) → 𝑖𝐸)
305, 9usgredg 29179 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑖𝐸) → ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑖 = {𝑎, 𝑏}))
3128, 29, 30syl2an 596 . . . . 5 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑖𝐸𝑖𝐶)) → ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑖 = {𝑎, 𝑏}))
32 vex 3448 . . . . . . . . . . . . . . . . 17 𝑎 ∈ V
33 vex 3448 . . . . . . . . . . . . . . . . 17 𝑏 ∈ V
3432, 33prss 4780 . . . . . . . . . . . . . . . 16 ((𝑎𝐶𝑏𝐶) ↔ {𝑎, 𝑏} ⊆ 𝐶)
35 elclnbgrelnbgr 47819 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑎 ∈ (𝐺 ClNeighbVtx 𝑋) ∧ 𝑎𝑋) → 𝑎 ∈ (𝐺 NeighbVtx 𝑋))
3635expcom 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑎𝑋 → (𝑎 ∈ (𝐺 ClNeighbVtx 𝑋) → 𝑎 ∈ (𝐺 NeighbVtx 𝑋)))
374eleq2i 2820 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑎𝐶𝑎 ∈ (𝐺 ClNeighbVtx 𝑋))
38 isubgr3stgr.u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑈 = (𝐺 NeighbVtx 𝑋)
3938eleq2i 2820 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑎𝑈𝑎 ∈ (𝐺 NeighbVtx 𝑋))
4036, 37, 393imtr4g 296 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎𝑋 → (𝑎𝐶𝑎𝑈))
41 elclnbgrelnbgr 47819 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑏 ∈ (𝐺 ClNeighbVtx 𝑋) ∧ 𝑏𝑋) → 𝑏 ∈ (𝐺 NeighbVtx 𝑋))
4241expcom 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑏𝑋 → (𝑏 ∈ (𝐺 ClNeighbVtx 𝑋) → 𝑏 ∈ (𝐺 NeighbVtx 𝑋)))
434eleq2i 2820 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑏𝐶𝑏 ∈ (𝐺 ClNeighbVtx 𝑋))
4438eleq2i 2820 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑏𝑈𝑏 ∈ (𝐺 NeighbVtx 𝑋))
4542, 43, 443imtr4g 296 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑏𝑋 → (𝑏𝐶𝑏𝑈))
4640, 45im2anan9r 621 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑏𝑋𝑎𝑋) → ((𝑎𝐶𝑏𝐶) → (𝑎𝑈𝑏𝑈)))
4746imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑏𝑋𝑎𝑋) ∧ (𝑎𝐶𝑏𝐶)) → (𝑎𝑈𝑏𝑈))
48473adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑏𝑋𝑎𝑋) ∧ (𝑎𝐶𝑏𝐶) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) → (𝑎𝑈𝑏𝑈))
49 preq1 4693 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = 𝑎 → {𝑥, 𝑦} = {𝑎, 𝑦})
50 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = 𝑎𝐸 = 𝐸)
5149, 50neleq12d 3034 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = 𝑎 → ({𝑥, 𝑦} ∉ 𝐸 ↔ {𝑎, 𝑦} ∉ 𝐸))
52 preq2 4694 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = 𝑏 → {𝑎, 𝑦} = {𝑎, 𝑏})
53 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = 𝑏𝐸 = 𝐸)
5452, 53neleq12d 3034 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 = 𝑏 → ({𝑎, 𝑦} ∉ 𝐸 ↔ {𝑎, 𝑏} ∉ 𝐸))
5551, 54rspc2v 3596 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎𝑈𝑏𝑈) → (∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸 → {𝑎, 𝑏} ∉ 𝐸))
5648, 55syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑏𝑋𝑎𝑋) ∧ (𝑎𝐶𝑏𝐶) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) → (∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸 → {𝑎, 𝑏} ∉ 𝐸))
57 pm2.24nel 3042 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ({𝑎, 𝑏} ∈ 𝐸 → ({𝑎, 𝑏} ∉ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
5857adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸) → ({𝑎, 𝑏} ∉ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
59583ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑏𝑋𝑎𝑋) ∧ (𝑎𝐶𝑏𝐶) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) → ({𝑎, 𝑏} ∉ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
6056, 59syld 47 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑏𝑋𝑎𝑋) ∧ (𝑎𝐶𝑏𝐶) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) → (∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
61603exp 1119 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑏𝑋𝑎𝑋) → ((𝑎𝐶𝑏𝐶) → ((𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸) → (∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))))
6261com24 95 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑏𝑋𝑎𝑋) → (∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸 → ((𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸) → ((𝑎𝐶𝑏𝐶) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))))
6362adantld 490 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏𝑋𝑎𝑋) → (((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸) → ((𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸) → ((𝑎𝐶𝑏𝐶) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))))
6463adantld 490 . . . . . . . . . . . . . . . . . . . 20 ((𝑏𝑋𝑎𝑋) → (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → ((𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸) → ((𝑎𝐶𝑏𝐶) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))))
6564adantrd 491 . . . . . . . . . . . . . . . . . . 19 ((𝑏𝑋𝑎𝑋) → ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → ((𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸) → ((𝑎𝐶𝑏𝐶) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))))
6665imp4c 423 . . . . . . . . . . . . . . . . . 18 ((𝑏𝑋𝑎𝑋) → ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
67 simpl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → 𝑏 = 𝑋)
68 simpllr 775 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶)) → (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0))
6968adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0))
70 simplrl 776 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶)) → 𝑎𝑏)
7170necomd 2980 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶)) → 𝑏𝑎)
7271adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → 𝑏𝑎)
73 simprrr 781 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → 𝑏𝐶)
74 simprrl 780 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → 𝑎𝐶)
755, 38, 4, 18, 16, 15, 9isubgr3stgrlem4 47961 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 = 𝑋 ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑏𝑎𝑏𝐶𝑎𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑏, 𝑎}) = {0, 𝑧})
7667, 69, 72, 73, 74, 75syl113anc 1384 . . . . . . . . . . . . . . . . . . . 20 ((𝑏 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑏, 𝑎}) = {0, 𝑧})
77 prcom 4692 . . . . . . . . . . . . . . . . . . . . . . 23 {𝑎, 𝑏} = {𝑏, 𝑎}
7877imaeq2i 6018 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹 “ {𝑎, 𝑏}) = (𝐹 “ {𝑏, 𝑎})
7978eqeq1i 2734 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 “ {𝑎, 𝑏}) = {0, 𝑧} ↔ (𝐹 “ {𝑏, 𝑎}) = {0, 𝑧})
8079rexbii 3076 . . . . . . . . . . . . . . . . . . . 20 (∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧} ↔ ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑏, 𝑎}) = {0, 𝑧})
8176, 80sylibr 234 . . . . . . . . . . . . . . . . . . 19 ((𝑏 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})
8281ex 412 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑋 → ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
83 simpl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → 𝑎 = 𝑋)
8468adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0))
8570adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → 𝑎𝑏)
86 simprrl 780 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → 𝑎𝐶)
87 simprrr 781 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → 𝑏𝐶)
885, 38, 4, 18, 16, 15, 9isubgr3stgrlem4 47961 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 = 𝑋 ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑎𝑏𝑎𝐶𝑏𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})
8983, 84, 85, 86, 87, 88syl113anc 1384 . . . . . . . . . . . . . . . . . . 19 ((𝑎 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})
9089ex 412 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑋 → ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
9166, 82, 90pm2.61iine 3015 . . . . . . . . . . . . . . . . 17 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})
9291ex 412 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) → ((𝑎𝐶𝑏𝐶) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
9334, 92biimtrrid 243 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) → ({𝑎, 𝑏} ⊆ 𝐶 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
9493exp32 420 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → (𝑎𝑏 → ({𝑎, 𝑏} ∈ 𝐸 → ({𝑎, 𝑏} ⊆ 𝐶 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))))
9594adantrd 491 . . . . . . . . . . . . 13 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → ((𝑎𝑏𝑖 = {𝑎, 𝑏}) → ({𝑎, 𝑏} ∈ 𝐸 → ({𝑎, 𝑏} ⊆ 𝐶 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))))
9695imp 406 . . . . . . . . . . . 12 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏𝑖 = {𝑎, 𝑏})) → ({𝑎, 𝑏} ∈ 𝐸 → ({𝑎, 𝑏} ⊆ 𝐶 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})))
9796com23 86 . . . . . . . . . . 11 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏𝑖 = {𝑎, 𝑏})) → ({𝑎, 𝑏} ⊆ 𝐶 → ({𝑎, 𝑏} ∈ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})))
98 sseq1 3969 . . . . . . . . . . . . . 14 (𝑖 = {𝑎, 𝑏} → (𝑖𝐶 ↔ {𝑎, 𝑏} ⊆ 𝐶))
99 eleq1 2816 . . . . . . . . . . . . . . 15 (𝑖 = {𝑎, 𝑏} → (𝑖𝐸 ↔ {𝑎, 𝑏} ∈ 𝐸))
100 imaeq2 6016 . . . . . . . . . . . . . . . . 17 (𝑖 = {𝑎, 𝑏} → (𝐹𝑖) = (𝐹 “ {𝑎, 𝑏}))
101100eqeq1d 2731 . . . . . . . . . . . . . . . 16 (𝑖 = {𝑎, 𝑏} → ((𝐹𝑖) = {0, 𝑧} ↔ (𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
102101rexbidv 3157 . . . . . . . . . . . . . . 15 (𝑖 = {𝑎, 𝑏} → (∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧} ↔ ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
10399, 102imbi12d 344 . . . . . . . . . . . . . 14 (𝑖 = {𝑎, 𝑏} → ((𝑖𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧}) ↔ ({𝑎, 𝑏} ∈ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})))
10498, 103imbi12d 344 . . . . . . . . . . . . 13 (𝑖 = {𝑎, 𝑏} → ((𝑖𝐶 → (𝑖𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧})) ↔ ({𝑎, 𝑏} ⊆ 𝐶 → ({𝑎, 𝑏} ∈ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))))
105104adantl 481 . . . . . . . . . . . 12 ((𝑎𝑏𝑖 = {𝑎, 𝑏}) → ((𝑖𝐶 → (𝑖𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧})) ↔ ({𝑎, 𝑏} ⊆ 𝐶 → ({𝑎, 𝑏} ∈ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))))
106105adantl 481 . . . . . . . . . . 11 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏𝑖 = {𝑎, 𝑏})) → ((𝑖𝐶 → (𝑖𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧})) ↔ ({𝑎, 𝑏} ⊆ 𝐶 → ({𝑎, 𝑏} ∈ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))))
10797, 106mpbird 257 . . . . . . . . . 10 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏𝑖 = {𝑎, 𝑏})) → (𝑖𝐶 → (𝑖𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧})))
108107ex 412 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → ((𝑎𝑏𝑖 = {𝑎, 𝑏}) → (𝑖𝐶 → (𝑖𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧}))))
109108com24 95 . . . . . . . 8 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → (𝑖𝐸 → (𝑖𝐶 → ((𝑎𝑏𝑖 = {𝑎, 𝑏}) → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧}))))
110109imp32 418 . . . . . . 7 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑖𝐸𝑖𝐶)) → ((𝑎𝑏𝑖 = {𝑎, 𝑏}) → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧}))
111110a1d 25 . . . . . 6 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑖𝐸𝑖𝐶)) → ((𝑎𝑉𝑏𝑉) → ((𝑎𝑏𝑖 = {𝑎, 𝑏}) → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧})))
112111rexlimdvv 3191 . . . . 5 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑖𝐸𝑖𝐶)) → (∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑖 = {𝑎, 𝑏}) → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧}))
11331, 112mpd 15 . . . 4 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑖𝐸𝑖𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧})
114 stgredgel 47949 . . . . 5 (𝑁 ∈ ℕ0 → ((𝐹𝑖) ∈ (Edg‘(StarGr‘𝑁)) ↔ ((𝐹𝑖) ⊆ (0...𝑁) ∧ ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧})))
11518, 114ax-mp 5 . . . 4 ((𝐹𝑖) ∈ (Edg‘(StarGr‘𝑁)) ↔ ((𝐹𝑖) ⊆ (0...𝑁) ∧ ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧}))
11627, 113, 115sylanbrc 583 . . 3 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑖𝐸𝑖𝐶)) → (𝐹𝑖) ∈ (Edg‘(StarGr‘𝑁)))
11713, 116sylbida 592 . 2 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑖𝐼) → (𝐹𝑖) ∈ (Edg‘(StarGr‘𝑁)))
118 isubgr3stgr.h . 2 𝐻 = (𝑖𝐼 ↦ (𝐹𝑖))
119117, 118fmptd 7068 1 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → 𝐻:𝐼⟶(Edg‘(StarGr‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wnel 3029  wral 3044  wrex 3053  wss 3911  {cpr 4587  cmpt 5183  cima 5634  wf 6495  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  0cc0 11044  1c1 11045  0cn0 12418  ...cfz 13444  chash 14271  Vtxcvtx 28976  Edgcedg 29027  UHGraphcuhgr 29036  USGraphcusgr 29129   NeighbVtx cnbgr 29312   ClNeighbVtx cclnbgr 47812   ISubGr cisubgr 47853  StarGrcstgr 47943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-hash 14272  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-edgf 28969  df-vtx 28978  df-iedg 28979  df-edg 29028  df-uhgr 29038  df-upgr 29062  df-umgr 29063  df-uspgr 29130  df-usgr 29131  df-nbgr 29313  df-clnbgr 47813  df-isubgr 47854  df-stgr 47944
This theorem is referenced by:  isubgr3stgrlem8  47965
  Copyright terms: Public domain W3C validator