Step | Hyp | Ref
| Expression |
1 | | usgruhgr 29217 |
. . . . . 6
⊢ (𝐺 ∈ USGraph → 𝐺 ∈
UHGraph) |
2 | 1 | adantr 480 |
. . . . 5
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) → 𝐺 ∈ UHGraph) |
3 | 2 | adantr 480 |
. . . 4
⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) → 𝐺 ∈ UHGraph) |
4 | | isubgr3stgr.c |
. . . . . 6
⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) |
5 | | isubgr3stgr.v |
. . . . . . 7
⊢ 𝑉 = (Vtx‘𝐺) |
6 | 5 | clnbgrssvtx 47755 |
. . . . . 6
⊢ (𝐺 ClNeighbVtx 𝑋) ⊆ 𝑉 |
7 | 4, 6 | eqsstri 4029 |
. . . . 5
⊢ 𝐶 ⊆ 𝑉 |
8 | 7 | a1i 11 |
. . . 4
⊢ ((𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0) → 𝐶 ⊆ 𝑉) |
9 | | isubgr3stgr.e |
. . . . 5
⊢ 𝐸 = (Edg‘𝐺) |
10 | | eqid 2734 |
. . . . 5
⊢ (𝐺 ISubGr 𝐶) = (𝐺 ISubGr 𝐶) |
11 | | isubgr3stgr.i |
. . . . 5
⊢ 𝐼 = (Edg‘(𝐺 ISubGr 𝐶)) |
12 | 5, 9, 10, 11 | isubgredg 47789 |
. . . 4
⊢ ((𝐺 ∈ UHGraph ∧ 𝐶 ⊆ 𝑉) → (𝑖 ∈ 𝐼 ↔ (𝑖 ∈ 𝐸 ∧ 𝑖 ⊆ 𝐶))) |
13 | 3, 8, 12 | syl2an 596 |
. . 3
⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) → (𝑖 ∈ 𝐼 ↔ (𝑖 ∈ 𝐸 ∧ 𝑖 ⊆ 𝐶))) |
14 | | f1of 6848 |
. . . . . . . 8
⊢ (𝐹:𝐶–1-1-onto→𝑊 → 𝐹:𝐶⟶𝑊) |
15 | | isubgr3stgr.w |
. . . . . . . . . . 11
⊢ 𝑊 = (Vtx‘𝑆) |
16 | | isubgr3stgr.s |
. . . . . . . . . . . 12
⊢ 𝑆 = (StarGr‘𝑁) |
17 | 16 | fveq2i 6909 |
. . . . . . . . . . 11
⊢
(Vtx‘𝑆) =
(Vtx‘(StarGr‘𝑁)) |
18 | | isubgr3stgr.n |
. . . . . . . . . . . 12
⊢ 𝑁 ∈
ℕ0 |
19 | | stgrvtx 47856 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ0
→ (Vtx‘(StarGr‘𝑁)) = (0...𝑁)) |
20 | 18, 19 | ax-mp 5 |
. . . . . . . . . . 11
⊢
(Vtx‘(StarGr‘𝑁)) = (0...𝑁) |
21 | 15, 17, 20 | 3eqtri 2766 |
. . . . . . . . . 10
⊢ 𝑊 = (0...𝑁) |
22 | 21 | eqimssi 4055 |
. . . . . . . . 9
⊢ 𝑊 ⊆ (0...𝑁) |
23 | 22 | a1i 11 |
. . . . . . . 8
⊢ (𝐹:𝐶–1-1-onto→𝑊 → 𝑊 ⊆ (0...𝑁)) |
24 | 14, 23 | fssd 6753 |
. . . . . . 7
⊢ (𝐹:𝐶–1-1-onto→𝑊 → 𝐹:𝐶⟶(0...𝑁)) |
25 | 24 | ad2antrl 728 |
. . . . . 6
⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) → 𝐹:𝐶⟶(0...𝑁)) |
26 | 25 | adantr 480 |
. . . . 5
⊢
(((((𝐺 ∈
USGraph ∧ 𝑋 ∈
𝑉) ∧
((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) ∧ (𝑖 ∈ 𝐸 ∧ 𝑖 ⊆ 𝐶)) → 𝐹:𝐶⟶(0...𝑁)) |
27 | 26 | fimassd 6757 |
. . . 4
⊢
(((((𝐺 ∈
USGraph ∧ 𝑋 ∈
𝑉) ∧
((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) ∧ (𝑖 ∈ 𝐸 ∧ 𝑖 ⊆ 𝐶)) → (𝐹 “ 𝑖) ⊆ (0...𝑁)) |
28 | | simplll 775 |
. . . . . 6
⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) → 𝐺 ∈ USGraph) |
29 | | simpl 482 |
. . . . . 6
⊢ ((𝑖 ∈ 𝐸 ∧ 𝑖 ⊆ 𝐶) → 𝑖 ∈ 𝐸) |
30 | 5, 9 | usgredg 29230 |
. . . . . 6
⊢ ((𝐺 ∈ USGraph ∧ 𝑖 ∈ 𝐸) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑖 = {𝑎, 𝑏})) |
31 | 28, 29, 30 | syl2an 596 |
. . . . 5
⊢
(((((𝐺 ∈
USGraph ∧ 𝑋 ∈
𝑉) ∧
((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) ∧ (𝑖 ∈ 𝐸 ∧ 𝑖 ⊆ 𝐶)) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑖 = {𝑎, 𝑏})) |
32 | | vex 3481 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑎 ∈ V |
33 | | vex 3481 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑏 ∈ V |
34 | 32, 33 | prss 4824 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶) ↔ {𝑎, 𝑏} ⊆ 𝐶) |
35 | | elclnbgrelnbgr 47749 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑎 ∈ (𝐺 ClNeighbVtx 𝑋) ∧ 𝑎 ≠ 𝑋) → 𝑎 ∈ (𝐺 NeighbVtx 𝑋)) |
36 | 35 | expcom 413 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑎 ≠ 𝑋 → (𝑎 ∈ (𝐺 ClNeighbVtx 𝑋) → 𝑎 ∈ (𝐺 NeighbVtx 𝑋))) |
37 | 4 | eleq2i 2830 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑎 ∈ 𝐶 ↔ 𝑎 ∈ (𝐺 ClNeighbVtx 𝑋)) |
38 | | isubgr3stgr.u |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) |
39 | 38 | eleq2i 2830 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑎 ∈ 𝑈 ↔ 𝑎 ∈ (𝐺 NeighbVtx 𝑋)) |
40 | 36, 37, 39 | 3imtr4g 296 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑎 ≠ 𝑋 → (𝑎 ∈ 𝐶 → 𝑎 ∈ 𝑈)) |
41 | | elclnbgrelnbgr 47749 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑏 ∈ (𝐺 ClNeighbVtx 𝑋) ∧ 𝑏 ≠ 𝑋) → 𝑏 ∈ (𝐺 NeighbVtx 𝑋)) |
42 | 41 | expcom 413 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑏 ≠ 𝑋 → (𝑏 ∈ (𝐺 ClNeighbVtx 𝑋) → 𝑏 ∈ (𝐺 NeighbVtx 𝑋))) |
43 | 4 | eleq2i 2830 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑏 ∈ 𝐶 ↔ 𝑏 ∈ (𝐺 ClNeighbVtx 𝑋)) |
44 | 38 | eleq2i 2830 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑏 ∈ 𝑈 ↔ 𝑏 ∈ (𝐺 NeighbVtx 𝑋)) |
45 | 42, 43, 44 | 3imtr4g 296 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑏 ≠ 𝑋 → (𝑏 ∈ 𝐶 → 𝑏 ∈ 𝑈)) |
46 | 40, 45 | im2anan9r 621 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑏 ≠ 𝑋 ∧ 𝑎 ≠ 𝑋) → ((𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶) → (𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈))) |
47 | 46 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑏 ≠ 𝑋 ∧ 𝑎 ≠ 𝑋) ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → (𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) |
48 | 47 | 3adant3 1131 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑏 ≠ 𝑋 ∧ 𝑎 ≠ 𝑋) ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶) ∧ (𝑎 ≠ 𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) → (𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) |
49 | | preq1 4737 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑥 = 𝑎 → {𝑥, 𝑦} = {𝑎, 𝑦}) |
50 | | eqidd 2735 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑥 = 𝑎 → 𝐸 = 𝐸) |
51 | 49, 50 | neleq12d 3048 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥 = 𝑎 → ({𝑥, 𝑦} ∉ 𝐸 ↔ {𝑎, 𝑦} ∉ 𝐸)) |
52 | | preq2 4738 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 = 𝑏 → {𝑎, 𝑦} = {𝑎, 𝑏}) |
53 | | eqidd 2735 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 = 𝑏 → 𝐸 = 𝐸) |
54 | 52, 53 | neleq12d 3048 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 = 𝑏 → ({𝑎, 𝑦} ∉ 𝐸 ↔ {𝑎, 𝑏} ∉ 𝐸)) |
55 | 51, 54 | rspc2v 3632 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈) → (∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸 → {𝑎, 𝑏} ∉ 𝐸)) |
56 | 48, 55 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑏 ≠ 𝑋 ∧ 𝑎 ≠ 𝑋) ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶) ∧ (𝑎 ≠ 𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) → (∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸 → {𝑎, 𝑏} ∉ 𝐸)) |
57 | | pm2.24nel 3056 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ({𝑎, 𝑏} ∈ 𝐸 → ({𝑎, 𝑏} ∉ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})) |
58 | 57 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑎 ≠ 𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸) → ({𝑎, 𝑏} ∉ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})) |
59 | 58 | 3ad2ant3 1134 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑏 ≠ 𝑋 ∧ 𝑎 ≠ 𝑋) ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶) ∧ (𝑎 ≠ 𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) → ({𝑎, 𝑏} ∉ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})) |
60 | 56, 59 | syld 47 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑏 ≠ 𝑋 ∧ 𝑎 ≠ 𝑋) ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶) ∧ (𝑎 ≠ 𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) → (∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})) |
61 | 60 | 3exp 1118 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑏 ≠ 𝑋 ∧ 𝑎 ≠ 𝑋) → ((𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶) → ((𝑎 ≠ 𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸) → (∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})))) |
62 | 61 | com24 95 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑏 ≠ 𝑋 ∧ 𝑎 ≠ 𝑋) → (∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸 → ((𝑎 ≠ 𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸) → ((𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})))) |
63 | 62 | adantld 490 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑏 ≠ 𝑋 ∧ 𝑎 ≠ 𝑋) → (((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸) → ((𝑎 ≠ 𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸) → ((𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})))) |
64 | 63 | adantld 490 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑏 ≠ 𝑋 ∧ 𝑎 ≠ 𝑋) → (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) → ((𝑎 ≠ 𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸) → ((𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})))) |
65 | 64 | adantrd 491 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑏 ≠ 𝑋 ∧ 𝑎 ≠ 𝑋) → ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) → ((𝑎 ≠ 𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸) → ((𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})))) |
66 | 65 | imp4c 423 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑏 ≠ 𝑋 ∧ 𝑎 ≠ 𝑋) → ((((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) ∧ (𝑎 ≠ 𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})) |
67 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑏 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) ∧ (𝑎 ≠ 𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶))) → 𝑏 = 𝑋) |
68 | | simpllr 776 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝐺 ∈
USGraph ∧ 𝑋 ∈
𝑉) ∧
((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) ∧ (𝑎 ≠ 𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) |
69 | 68 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑏 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) ∧ (𝑎 ≠ 𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶))) → (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) |
70 | | simplrl 777 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝐺 ∈
USGraph ∧ 𝑋 ∈
𝑉) ∧
((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) ∧ (𝑎 ≠ 𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → 𝑎 ≠ 𝑏) |
71 | 70 | necomd 2993 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝐺 ∈
USGraph ∧ 𝑋 ∈
𝑉) ∧
((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) ∧ (𝑎 ≠ 𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → 𝑏 ≠ 𝑎) |
72 | 71 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑏 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) ∧ (𝑎 ≠ 𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶))) → 𝑏 ≠ 𝑎) |
73 | | simprrr 782 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑏 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) ∧ (𝑎 ≠ 𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶))) → 𝑏 ∈ 𝐶) |
74 | | simprrl 781 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑏 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) ∧ (𝑎 ≠ 𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶))) → 𝑎 ∈ 𝐶) |
75 | 5, 38, 4, 18, 16, 15, 9 | isubgr3stgrlem4 47871 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑏 = 𝑋 ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0) ∧ (𝑏 ≠ 𝑎 ∧ 𝑏 ∈ 𝐶 ∧ 𝑎 ∈ 𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑏, 𝑎}) = {0, 𝑧}) |
76 | 67, 69, 72, 73, 74, 75 | syl113anc 1381 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑏 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) ∧ (𝑎 ≠ 𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶))) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑏, 𝑎}) = {0, 𝑧}) |
77 | | prcom 4736 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ {𝑎, 𝑏} = {𝑏, 𝑎} |
78 | 77 | imaeq2i 6077 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐹 “ {𝑎, 𝑏}) = (𝐹 “ {𝑏, 𝑎}) |
79 | 78 | eqeq1i 2739 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹 “ {𝑎, 𝑏}) = {0, 𝑧} ↔ (𝐹 “ {𝑏, 𝑎}) = {0, 𝑧}) |
80 | 79 | rexbii 3091 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∃𝑧 ∈
(1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧} ↔ ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑏, 𝑎}) = {0, 𝑧}) |
81 | 76, 80 | sylibr 234 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑏 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) ∧ (𝑎 ≠ 𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶))) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}) |
82 | 81 | ex 412 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 𝑋 → ((((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) ∧ (𝑎 ≠ 𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})) |
83 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑎 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) ∧ (𝑎 ≠ 𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶))) → 𝑎 = 𝑋) |
84 | 68 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑎 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) ∧ (𝑎 ≠ 𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶))) → (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) |
85 | 70 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑎 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) ∧ (𝑎 ≠ 𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶))) → 𝑎 ≠ 𝑏) |
86 | | simprrl 781 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑎 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) ∧ (𝑎 ≠ 𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶))) → 𝑎 ∈ 𝐶) |
87 | | simprrr 782 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑎 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) ∧ (𝑎 ≠ 𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶))) → 𝑏 ∈ 𝐶) |
88 | 5, 38, 4, 18, 16, 15, 9 | isubgr3stgrlem4 47871 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑎 = 𝑋 ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0) ∧ (𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}) |
89 | 83, 84, 85, 86, 87, 88 | syl113anc 1381 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑎 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) ∧ (𝑎 ≠ 𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶))) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}) |
90 | 89 | ex 412 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = 𝑋 → ((((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) ∧ (𝑎 ≠ 𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})) |
91 | 66, 82, 90 | pm2.61iine 3029 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐺 ∈
USGraph ∧ 𝑋 ∈
𝑉) ∧
((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) ∧ (𝑎 ≠ 𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}) |
92 | 91 | ex 412 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐺 ∈
USGraph ∧ 𝑋 ∈
𝑉) ∧
((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) ∧ (𝑎 ≠ 𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) → ((𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})) |
93 | 34, 92 | biimtrrid 243 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐺 ∈
USGraph ∧ 𝑋 ∈
𝑉) ∧
((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) ∧ (𝑎 ≠ 𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) → ({𝑎, 𝑏} ⊆ 𝐶 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})) |
94 | 93 | exp32 420 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) → (𝑎 ≠ 𝑏 → ({𝑎, 𝑏} ∈ 𝐸 → ({𝑎, 𝑏} ⊆ 𝐶 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})))) |
95 | 94 | adantrd 491 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) → ((𝑎 ≠ 𝑏 ∧ 𝑖 = {𝑎, 𝑏}) → ({𝑎, 𝑏} ∈ 𝐸 → ({𝑎, 𝑏} ⊆ 𝐶 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})))) |
96 | 95 | imp 406 |
. . . . . . . . . . . 12
⊢
(((((𝐺 ∈
USGraph ∧ 𝑋 ∈
𝑉) ∧
((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) ∧ (𝑎 ≠ 𝑏 ∧ 𝑖 = {𝑎, 𝑏})) → ({𝑎, 𝑏} ∈ 𝐸 → ({𝑎, 𝑏} ⊆ 𝐶 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))) |
97 | 96 | com23 86 |
. . . . . . . . . . 11
⊢
(((((𝐺 ∈
USGraph ∧ 𝑋 ∈
𝑉) ∧
((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) ∧ (𝑎 ≠ 𝑏 ∧ 𝑖 = {𝑎, 𝑏})) → ({𝑎, 𝑏} ⊆ 𝐶 → ({𝑎, 𝑏} ∈ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))) |
98 | | sseq1 4020 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = {𝑎, 𝑏} → (𝑖 ⊆ 𝐶 ↔ {𝑎, 𝑏} ⊆ 𝐶)) |
99 | | eleq1 2826 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = {𝑎, 𝑏} → (𝑖 ∈ 𝐸 ↔ {𝑎, 𝑏} ∈ 𝐸)) |
100 | | imaeq2 6075 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = {𝑎, 𝑏} → (𝐹 “ 𝑖) = (𝐹 “ {𝑎, 𝑏})) |
101 | 100 | eqeq1d 2736 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = {𝑎, 𝑏} → ((𝐹 “ 𝑖) = {0, 𝑧} ↔ (𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})) |
102 | 101 | rexbidv 3176 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = {𝑎, 𝑏} → (∃𝑧 ∈ (1...𝑁)(𝐹 “ 𝑖) = {0, 𝑧} ↔ ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})) |
103 | 99, 102 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = {𝑎, 𝑏} → ((𝑖 ∈ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ 𝑖) = {0, 𝑧}) ↔ ({𝑎, 𝑏} ∈ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))) |
104 | 98, 103 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ (𝑖 = {𝑎, 𝑏} → ((𝑖 ⊆ 𝐶 → (𝑖 ∈ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ 𝑖) = {0, 𝑧})) ↔ ({𝑎, 𝑏} ⊆ 𝐶 → ({𝑎, 𝑏} ∈ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})))) |
105 | 104 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑎 ≠ 𝑏 ∧ 𝑖 = {𝑎, 𝑏}) → ((𝑖 ⊆ 𝐶 → (𝑖 ∈ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ 𝑖) = {0, 𝑧})) ↔ ({𝑎, 𝑏} ⊆ 𝐶 → ({𝑎, 𝑏} ∈ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})))) |
106 | 105 | adantl 481 |
. . . . . . . . . . 11
⊢
(((((𝐺 ∈
USGraph ∧ 𝑋 ∈
𝑉) ∧
((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) ∧ (𝑎 ≠ 𝑏 ∧ 𝑖 = {𝑎, 𝑏})) → ((𝑖 ⊆ 𝐶 → (𝑖 ∈ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ 𝑖) = {0, 𝑧})) ↔ ({𝑎, 𝑏} ⊆ 𝐶 → ({𝑎, 𝑏} ∈ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})))) |
107 | 97, 106 | mpbird 257 |
. . . . . . . . . 10
⊢
(((((𝐺 ∈
USGraph ∧ 𝑋 ∈
𝑉) ∧
((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) ∧ (𝑎 ≠ 𝑏 ∧ 𝑖 = {𝑎, 𝑏})) → (𝑖 ⊆ 𝐶 → (𝑖 ∈ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ 𝑖) = {0, 𝑧}))) |
108 | 107 | ex 412 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) → ((𝑎 ≠ 𝑏 ∧ 𝑖 = {𝑎, 𝑏}) → (𝑖 ⊆ 𝐶 → (𝑖 ∈ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ 𝑖) = {0, 𝑧})))) |
109 | 108 | com24 95 |
. . . . . . . 8
⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) → (𝑖 ∈ 𝐸 → (𝑖 ⊆ 𝐶 → ((𝑎 ≠ 𝑏 ∧ 𝑖 = {𝑎, 𝑏}) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ 𝑖) = {0, 𝑧})))) |
110 | 109 | imp32 418 |
. . . . . . 7
⊢
(((((𝐺 ∈
USGraph ∧ 𝑋 ∈
𝑉) ∧
((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) ∧ (𝑖 ∈ 𝐸 ∧ 𝑖 ⊆ 𝐶)) → ((𝑎 ≠ 𝑏 ∧ 𝑖 = {𝑎, 𝑏}) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ 𝑖) = {0, 𝑧})) |
111 | 110 | a1d 25 |
. . . . . 6
⊢
(((((𝐺 ∈
USGraph ∧ 𝑋 ∈
𝑉) ∧
((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) ∧ (𝑖 ∈ 𝐸 ∧ 𝑖 ⊆ 𝐶)) → ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → ((𝑎 ≠ 𝑏 ∧ 𝑖 = {𝑎, 𝑏}) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ 𝑖) = {0, 𝑧}))) |
112 | 111 | rexlimdvv 3209 |
. . . . 5
⊢
(((((𝐺 ∈
USGraph ∧ 𝑋 ∈
𝑉) ∧
((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) ∧ (𝑖 ∈ 𝐸 ∧ 𝑖 ⊆ 𝐶)) → (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑖 = {𝑎, 𝑏}) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ 𝑖) = {0, 𝑧})) |
113 | 31, 112 | mpd 15 |
. . . 4
⊢
(((((𝐺 ∈
USGraph ∧ 𝑋 ∈
𝑉) ∧
((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) ∧ (𝑖 ∈ 𝐸 ∧ 𝑖 ⊆ 𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ 𝑖) = {0, 𝑧}) |
114 | | stgredgel 47859 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ ((𝐹 “ 𝑖) ∈
(Edg‘(StarGr‘𝑁)) ↔ ((𝐹 “ 𝑖) ⊆ (0...𝑁) ∧ ∃𝑧 ∈ (1...𝑁)(𝐹 “ 𝑖) = {0, 𝑧}))) |
115 | 18, 114 | ax-mp 5 |
. . . 4
⊢ ((𝐹 “ 𝑖) ∈ (Edg‘(StarGr‘𝑁)) ↔ ((𝐹 “ 𝑖) ⊆ (0...𝑁) ∧ ∃𝑧 ∈ (1...𝑁)(𝐹 “ 𝑖) = {0, 𝑧})) |
116 | 27, 113, 115 | sylanbrc 583 |
. . 3
⊢
(((((𝐺 ∈
USGraph ∧ 𝑋 ∈
𝑉) ∧
((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) ∧ (𝑖 ∈ 𝐸 ∧ 𝑖 ⊆ 𝐶)) → (𝐹 “ 𝑖) ∈ (Edg‘(StarGr‘𝑁))) |
117 | 13, 116 | sylbida 592 |
. 2
⊢
(((((𝐺 ∈
USGraph ∧ 𝑋 ∈
𝑉) ∧
((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) ∧ 𝑖 ∈ 𝐼) → (𝐹 “ 𝑖) ∈ (Edg‘(StarGr‘𝑁))) |
118 | | isubgr3stgr.h |
. 2
⊢ 𝐻 = (𝑖 ∈ 𝐼 ↦ (𝐹 “ 𝑖)) |
119 | 117, 118 | fmptd 7133 |
1
⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) → 𝐻:𝐼⟶(Edg‘(StarGr‘𝑁))) |