Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgr3stgrlem6 Structured version   Visualization version   GIF version

Theorem isubgr3stgrlem6 47931
Description: Lemma 6 for isubgr3stgr 47935. (Contributed by AV, 24-Sep-2025.)
Hypotheses
Ref Expression
isubgr3stgr.v 𝑉 = (Vtx‘𝐺)
isubgr3stgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
isubgr3stgr.c 𝐶 = (𝐺 ClNeighbVtx 𝑋)
isubgr3stgr.n 𝑁 ∈ ℕ0
isubgr3stgr.s 𝑆 = (StarGr‘𝑁)
isubgr3stgr.w 𝑊 = (Vtx‘𝑆)
isubgr3stgr.e 𝐸 = (Edg‘𝐺)
isubgr3stgr.i 𝐼 = (Edg‘(𝐺 ISubGr 𝐶))
isubgr3stgr.h 𝐻 = (𝑖𝐼 ↦ (𝐹𝑖))
Assertion
Ref Expression
isubgr3stgrlem6 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → 𝐻:𝐼⟶(Edg‘(StarGr‘𝑁)))
Distinct variable groups:   𝐶,𝑖   𝑖,𝐹   𝑖,𝐼   𝑖,𝑊   𝑖,𝐸,𝑥,𝑦   𝑖,𝐺   𝑖,𝑁   𝑈,𝑖,𝑥,𝑦   𝑖,𝑉   𝑖,𝑋
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑆(𝑥,𝑦,𝑖)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦,𝑖)   𝐼(𝑥,𝑦)   𝑁(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem isubgr3stgrlem6
Dummy variables 𝑧 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 usgruhgr 29111 . . . . . 6 (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph)
21adantr 480 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → 𝐺 ∈ UHGraph)
32adantr 480 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → 𝐺 ∈ UHGraph)
4 isubgr3stgr.c . . . . . 6 𝐶 = (𝐺 ClNeighbVtx 𝑋)
5 isubgr3stgr.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
65clnbgrssvtx 47793 . . . . . 6 (𝐺 ClNeighbVtx 𝑋) ⊆ 𝑉
74, 6eqsstri 4005 . . . . 5 𝐶𝑉
87a1i 11 . . . 4 ((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) → 𝐶𝑉)
9 isubgr3stgr.e . . . . 5 𝐸 = (Edg‘𝐺)
10 eqid 2735 . . . . 5 (𝐺 ISubGr 𝐶) = (𝐺 ISubGr 𝐶)
11 isubgr3stgr.i . . . . 5 𝐼 = (Edg‘(𝐺 ISubGr 𝐶))
125, 9, 10, 11isubgredg 47827 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐶𝑉) → (𝑖𝐼 ↔ (𝑖𝐸𝑖𝐶)))
133, 8, 12syl2an 596 . . 3 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → (𝑖𝐼 ↔ (𝑖𝐸𝑖𝐶)))
14 f1of 6817 . . . . . . . 8 (𝐹:𝐶1-1-onto𝑊𝐹:𝐶𝑊)
15 isubgr3stgr.w . . . . . . . . . . 11 𝑊 = (Vtx‘𝑆)
16 isubgr3stgr.s . . . . . . . . . . . 12 𝑆 = (StarGr‘𝑁)
1716fveq2i 6878 . . . . . . . . . . 11 (Vtx‘𝑆) = (Vtx‘(StarGr‘𝑁))
18 isubgr3stgr.n . . . . . . . . . . . 12 𝑁 ∈ ℕ0
19 stgrvtx 47914 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → (Vtx‘(StarGr‘𝑁)) = (0...𝑁))
2018, 19ax-mp 5 . . . . . . . . . . 11 (Vtx‘(StarGr‘𝑁)) = (0...𝑁)
2115, 17, 203eqtri 2762 . . . . . . . . . 10 𝑊 = (0...𝑁)
2221eqimssi 4019 . . . . . . . . 9 𝑊 ⊆ (0...𝑁)
2322a1i 11 . . . . . . . 8 (𝐹:𝐶1-1-onto𝑊𝑊 ⊆ (0...𝑁))
2414, 23fssd 6722 . . . . . . 7 (𝐹:𝐶1-1-onto𝑊𝐹:𝐶⟶(0...𝑁))
2524ad2antrl 728 . . . . . 6 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → 𝐹:𝐶⟶(0...𝑁))
2625adantr 480 . . . . 5 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑖𝐸𝑖𝐶)) → 𝐹:𝐶⟶(0...𝑁))
2726fimassd 6726 . . . 4 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑖𝐸𝑖𝐶)) → (𝐹𝑖) ⊆ (0...𝑁))
28 simplll 774 . . . . . 6 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → 𝐺 ∈ USGraph)
29 simpl 482 . . . . . 6 ((𝑖𝐸𝑖𝐶) → 𝑖𝐸)
305, 9usgredg 29124 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑖𝐸) → ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑖 = {𝑎, 𝑏}))
3128, 29, 30syl2an 596 . . . . 5 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑖𝐸𝑖𝐶)) → ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑖 = {𝑎, 𝑏}))
32 vex 3463 . . . . . . . . . . . . . . . . 17 𝑎 ∈ V
33 vex 3463 . . . . . . . . . . . . . . . . 17 𝑏 ∈ V
3432, 33prss 4796 . . . . . . . . . . . . . . . 16 ((𝑎𝐶𝑏𝐶) ↔ {𝑎, 𝑏} ⊆ 𝐶)
35 elclnbgrelnbgr 47787 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑎 ∈ (𝐺 ClNeighbVtx 𝑋) ∧ 𝑎𝑋) → 𝑎 ∈ (𝐺 NeighbVtx 𝑋))
3635expcom 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑎𝑋 → (𝑎 ∈ (𝐺 ClNeighbVtx 𝑋) → 𝑎 ∈ (𝐺 NeighbVtx 𝑋)))
374eleq2i 2826 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑎𝐶𝑎 ∈ (𝐺 ClNeighbVtx 𝑋))
38 isubgr3stgr.u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑈 = (𝐺 NeighbVtx 𝑋)
3938eleq2i 2826 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑎𝑈𝑎 ∈ (𝐺 NeighbVtx 𝑋))
4036, 37, 393imtr4g 296 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎𝑋 → (𝑎𝐶𝑎𝑈))
41 elclnbgrelnbgr 47787 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑏 ∈ (𝐺 ClNeighbVtx 𝑋) ∧ 𝑏𝑋) → 𝑏 ∈ (𝐺 NeighbVtx 𝑋))
4241expcom 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑏𝑋 → (𝑏 ∈ (𝐺 ClNeighbVtx 𝑋) → 𝑏 ∈ (𝐺 NeighbVtx 𝑋)))
434eleq2i 2826 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑏𝐶𝑏 ∈ (𝐺 ClNeighbVtx 𝑋))
4438eleq2i 2826 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑏𝑈𝑏 ∈ (𝐺 NeighbVtx 𝑋))
4542, 43, 443imtr4g 296 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑏𝑋 → (𝑏𝐶𝑏𝑈))
4640, 45im2anan9r 621 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑏𝑋𝑎𝑋) → ((𝑎𝐶𝑏𝐶) → (𝑎𝑈𝑏𝑈)))
4746imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑏𝑋𝑎𝑋) ∧ (𝑎𝐶𝑏𝐶)) → (𝑎𝑈𝑏𝑈))
48473adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑏𝑋𝑎𝑋) ∧ (𝑎𝐶𝑏𝐶) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) → (𝑎𝑈𝑏𝑈))
49 preq1 4709 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = 𝑎 → {𝑥, 𝑦} = {𝑎, 𝑦})
50 eqidd 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = 𝑎𝐸 = 𝐸)
5149, 50neleq12d 3041 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = 𝑎 → ({𝑥, 𝑦} ∉ 𝐸 ↔ {𝑎, 𝑦} ∉ 𝐸))
52 preq2 4710 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = 𝑏 → {𝑎, 𝑦} = {𝑎, 𝑏})
53 eqidd 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = 𝑏𝐸 = 𝐸)
5452, 53neleq12d 3041 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 = 𝑏 → ({𝑎, 𝑦} ∉ 𝐸 ↔ {𝑎, 𝑏} ∉ 𝐸))
5551, 54rspc2v 3612 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎𝑈𝑏𝑈) → (∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸 → {𝑎, 𝑏} ∉ 𝐸))
5648, 55syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑏𝑋𝑎𝑋) ∧ (𝑎𝐶𝑏𝐶) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) → (∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸 → {𝑎, 𝑏} ∉ 𝐸))
57 pm2.24nel 3049 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ({𝑎, 𝑏} ∈ 𝐸 → ({𝑎, 𝑏} ∉ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
5857adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸) → ({𝑎, 𝑏} ∉ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
59583ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑏𝑋𝑎𝑋) ∧ (𝑎𝐶𝑏𝐶) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) → ({𝑎, 𝑏} ∉ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
6056, 59syld 47 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑏𝑋𝑎𝑋) ∧ (𝑎𝐶𝑏𝐶) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) → (∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
61603exp 1119 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑏𝑋𝑎𝑋) → ((𝑎𝐶𝑏𝐶) → ((𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸) → (∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))))
6261com24 95 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑏𝑋𝑎𝑋) → (∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸 → ((𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸) → ((𝑎𝐶𝑏𝐶) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))))
6362adantld 490 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏𝑋𝑎𝑋) → (((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸) → ((𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸) → ((𝑎𝐶𝑏𝐶) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))))
6463adantld 490 . . . . . . . . . . . . . . . . . . . 20 ((𝑏𝑋𝑎𝑋) → (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → ((𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸) → ((𝑎𝐶𝑏𝐶) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))))
6564adantrd 491 . . . . . . . . . . . . . . . . . . 19 ((𝑏𝑋𝑎𝑋) → ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → ((𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸) → ((𝑎𝐶𝑏𝐶) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))))
6665imp4c 423 . . . . . . . . . . . . . . . . . 18 ((𝑏𝑋𝑎𝑋) → ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
67 simpl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → 𝑏 = 𝑋)
68 simpllr 775 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶)) → (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0))
6968adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0))
70 simplrl 776 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶)) → 𝑎𝑏)
7170necomd 2987 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶)) → 𝑏𝑎)
7271adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → 𝑏𝑎)
73 simprrr 781 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → 𝑏𝐶)
74 simprrl 780 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → 𝑎𝐶)
755, 38, 4, 18, 16, 15, 9isubgr3stgrlem4 47929 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 = 𝑋 ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑏𝑎𝑏𝐶𝑎𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑏, 𝑎}) = {0, 𝑧})
7667, 69, 72, 73, 74, 75syl113anc 1384 . . . . . . . . . . . . . . . . . . . 20 ((𝑏 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑏, 𝑎}) = {0, 𝑧})
77 prcom 4708 . . . . . . . . . . . . . . . . . . . . . . 23 {𝑎, 𝑏} = {𝑏, 𝑎}
7877imaeq2i 6045 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹 “ {𝑎, 𝑏}) = (𝐹 “ {𝑏, 𝑎})
7978eqeq1i 2740 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 “ {𝑎, 𝑏}) = {0, 𝑧} ↔ (𝐹 “ {𝑏, 𝑎}) = {0, 𝑧})
8079rexbii 3083 . . . . . . . . . . . . . . . . . . . 20 (∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧} ↔ ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑏, 𝑎}) = {0, 𝑧})
8176, 80sylibr 234 . . . . . . . . . . . . . . . . . . 19 ((𝑏 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})
8281ex 412 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑋 → ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
83 simpl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → 𝑎 = 𝑋)
8468adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0))
8570adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → 𝑎𝑏)
86 simprrl 780 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → 𝑎𝐶)
87 simprrr 781 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → 𝑏𝐶)
885, 38, 4, 18, 16, 15, 9isubgr3stgrlem4 47929 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 = 𝑋 ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑎𝑏𝑎𝐶𝑏𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})
8983, 84, 85, 86, 87, 88syl113anc 1384 . . . . . . . . . . . . . . . . . . 19 ((𝑎 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})
9089ex 412 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑋 → ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
9166, 82, 90pm2.61iine 3022 . . . . . . . . . . . . . . . . 17 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})
9291ex 412 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) → ((𝑎𝐶𝑏𝐶) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
9334, 92biimtrrid 243 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) → ({𝑎, 𝑏} ⊆ 𝐶 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
9493exp32 420 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → (𝑎𝑏 → ({𝑎, 𝑏} ∈ 𝐸 → ({𝑎, 𝑏} ⊆ 𝐶 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))))
9594adantrd 491 . . . . . . . . . . . . 13 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → ((𝑎𝑏𝑖 = {𝑎, 𝑏}) → ({𝑎, 𝑏} ∈ 𝐸 → ({𝑎, 𝑏} ⊆ 𝐶 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))))
9695imp 406 . . . . . . . . . . . 12 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏𝑖 = {𝑎, 𝑏})) → ({𝑎, 𝑏} ∈ 𝐸 → ({𝑎, 𝑏} ⊆ 𝐶 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})))
9796com23 86 . . . . . . . . . . 11 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏𝑖 = {𝑎, 𝑏})) → ({𝑎, 𝑏} ⊆ 𝐶 → ({𝑎, 𝑏} ∈ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})))
98 sseq1 3984 . . . . . . . . . . . . . 14 (𝑖 = {𝑎, 𝑏} → (𝑖𝐶 ↔ {𝑎, 𝑏} ⊆ 𝐶))
99 eleq1 2822 . . . . . . . . . . . . . . 15 (𝑖 = {𝑎, 𝑏} → (𝑖𝐸 ↔ {𝑎, 𝑏} ∈ 𝐸))
100 imaeq2 6043 . . . . . . . . . . . . . . . . 17 (𝑖 = {𝑎, 𝑏} → (𝐹𝑖) = (𝐹 “ {𝑎, 𝑏}))
101100eqeq1d 2737 . . . . . . . . . . . . . . . 16 (𝑖 = {𝑎, 𝑏} → ((𝐹𝑖) = {0, 𝑧} ↔ (𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
102101rexbidv 3164 . . . . . . . . . . . . . . 15 (𝑖 = {𝑎, 𝑏} → (∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧} ↔ ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
10399, 102imbi12d 344 . . . . . . . . . . . . . 14 (𝑖 = {𝑎, 𝑏} → ((𝑖𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧}) ↔ ({𝑎, 𝑏} ∈ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})))
10498, 103imbi12d 344 . . . . . . . . . . . . 13 (𝑖 = {𝑎, 𝑏} → ((𝑖𝐶 → (𝑖𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧})) ↔ ({𝑎, 𝑏} ⊆ 𝐶 → ({𝑎, 𝑏} ∈ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))))
105104adantl 481 . . . . . . . . . . . 12 ((𝑎𝑏𝑖 = {𝑎, 𝑏}) → ((𝑖𝐶 → (𝑖𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧})) ↔ ({𝑎, 𝑏} ⊆ 𝐶 → ({𝑎, 𝑏} ∈ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))))
106105adantl 481 . . . . . . . . . . 11 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏𝑖 = {𝑎, 𝑏})) → ((𝑖𝐶 → (𝑖𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧})) ↔ ({𝑎, 𝑏} ⊆ 𝐶 → ({𝑎, 𝑏} ∈ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))))
10797, 106mpbird 257 . . . . . . . . . 10 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏𝑖 = {𝑎, 𝑏})) → (𝑖𝐶 → (𝑖𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧})))
108107ex 412 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → ((𝑎𝑏𝑖 = {𝑎, 𝑏}) → (𝑖𝐶 → (𝑖𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧}))))
109108com24 95 . . . . . . . 8 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → (𝑖𝐸 → (𝑖𝐶 → ((𝑎𝑏𝑖 = {𝑎, 𝑏}) → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧}))))
110109imp32 418 . . . . . . 7 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑖𝐸𝑖𝐶)) → ((𝑎𝑏𝑖 = {𝑎, 𝑏}) → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧}))
111110a1d 25 . . . . . 6 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑖𝐸𝑖𝐶)) → ((𝑎𝑉𝑏𝑉) → ((𝑎𝑏𝑖 = {𝑎, 𝑏}) → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧})))
112111rexlimdvv 3197 . . . . 5 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑖𝐸𝑖𝐶)) → (∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑖 = {𝑎, 𝑏}) → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧}))
11331, 112mpd 15 . . . 4 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑖𝐸𝑖𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧})
114 stgredgel 47917 . . . . 5 (𝑁 ∈ ℕ0 → ((𝐹𝑖) ∈ (Edg‘(StarGr‘𝑁)) ↔ ((𝐹𝑖) ⊆ (0...𝑁) ∧ ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧})))
11518, 114ax-mp 5 . . . 4 ((𝐹𝑖) ∈ (Edg‘(StarGr‘𝑁)) ↔ ((𝐹𝑖) ⊆ (0...𝑁) ∧ ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧}))
11627, 113, 115sylanbrc 583 . . 3 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑖𝐸𝑖𝐶)) → (𝐹𝑖) ∈ (Edg‘(StarGr‘𝑁)))
11713, 116sylbida 592 . 2 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑖𝐼) → (𝐹𝑖) ∈ (Edg‘(StarGr‘𝑁)))
118 isubgr3stgr.h . 2 𝐻 = (𝑖𝐼 ↦ (𝐹𝑖))
119117, 118fmptd 7103 1 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → 𝐻:𝐼⟶(Edg‘(StarGr‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wnel 3036  wral 3051  wrex 3060  wss 3926  {cpr 4603  cmpt 5201  cima 5657  wf 6526  1-1-ontowf1o 6529  cfv 6530  (class class class)co 7403  0cc0 11127  1c1 11128  0cn0 12499  ...cfz 13522  chash 14346  Vtxcvtx 28921  Edgcedg 28972  UHGraphcuhgr 28981  USGraphcusgr 29074   NeighbVtx cnbgr 29257   ClNeighbVtx cclnbgr 47780   ISubGr cisubgr 47821  StarGrcstgr 47911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-dju 9913  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-xnn0 12573  df-z 12587  df-dec 12707  df-uz 12851  df-fz 13523  df-hash 14347  df-struct 17164  df-slot 17199  df-ndx 17211  df-base 17227  df-edgf 28914  df-vtx 28923  df-iedg 28924  df-edg 28973  df-uhgr 28983  df-upgr 29007  df-umgr 29008  df-uspgr 29075  df-usgr 29076  df-nbgr 29258  df-clnbgr 47781  df-isubgr 47822  df-stgr 47912
This theorem is referenced by:  isubgr3stgrlem8  47933
  Copyright terms: Public domain W3C validator