Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgr3stgrlem6 Structured version   Visualization version   GIF version

Theorem isubgr3stgrlem6 47965
Description: Lemma 6 for isubgr3stgr 47969. (Contributed by AV, 24-Sep-2025.)
Hypotheses
Ref Expression
isubgr3stgr.v 𝑉 = (Vtx‘𝐺)
isubgr3stgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
isubgr3stgr.c 𝐶 = (𝐺 ClNeighbVtx 𝑋)
isubgr3stgr.n 𝑁 ∈ ℕ0
isubgr3stgr.s 𝑆 = (StarGr‘𝑁)
isubgr3stgr.w 𝑊 = (Vtx‘𝑆)
isubgr3stgr.e 𝐸 = (Edg‘𝐺)
isubgr3stgr.i 𝐼 = (Edg‘(𝐺 ISubGr 𝐶))
isubgr3stgr.h 𝐻 = (𝑖𝐼 ↦ (𝐹𝑖))
Assertion
Ref Expression
isubgr3stgrlem6 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → 𝐻:𝐼⟶(Edg‘(StarGr‘𝑁)))
Distinct variable groups:   𝐶,𝑖   𝑖,𝐹   𝑖,𝐼   𝑖,𝑊   𝑖,𝐸,𝑥,𝑦   𝑖,𝐺   𝑖,𝑁   𝑈,𝑖,𝑥,𝑦   𝑖,𝑉   𝑖,𝑋
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑆(𝑥,𝑦,𝑖)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦,𝑖)   𝐼(𝑥,𝑦)   𝑁(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem isubgr3stgrlem6
Dummy variables 𝑧 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 usgruhgr 29131 . . . . . 6 (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph)
21adantr 480 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → 𝐺 ∈ UHGraph)
32adantr 480 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → 𝐺 ∈ UHGraph)
4 isubgr3stgr.c . . . . . 6 𝐶 = (𝐺 ClNeighbVtx 𝑋)
5 isubgr3stgr.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
65clnbgrssvtx 47825 . . . . . 6 (𝐺 ClNeighbVtx 𝑋) ⊆ 𝑉
74, 6eqsstri 3982 . . . . 5 𝐶𝑉
87a1i 11 . . . 4 ((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) → 𝐶𝑉)
9 isubgr3stgr.e . . . . 5 𝐸 = (Edg‘𝐺)
10 eqid 2729 . . . . 5 (𝐺 ISubGr 𝐶) = (𝐺 ISubGr 𝐶)
11 isubgr3stgr.i . . . . 5 𝐼 = (Edg‘(𝐺 ISubGr 𝐶))
125, 9, 10, 11isubgredg 47860 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐶𝑉) → (𝑖𝐼 ↔ (𝑖𝐸𝑖𝐶)))
133, 8, 12syl2an 596 . . 3 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → (𝑖𝐼 ↔ (𝑖𝐸𝑖𝐶)))
14 f1of 6764 . . . . . . . 8 (𝐹:𝐶1-1-onto𝑊𝐹:𝐶𝑊)
15 isubgr3stgr.w . . . . . . . . . . 11 𝑊 = (Vtx‘𝑆)
16 isubgr3stgr.s . . . . . . . . . . . 12 𝑆 = (StarGr‘𝑁)
1716fveq2i 6825 . . . . . . . . . . 11 (Vtx‘𝑆) = (Vtx‘(StarGr‘𝑁))
18 isubgr3stgr.n . . . . . . . . . . . 12 𝑁 ∈ ℕ0
19 stgrvtx 47948 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → (Vtx‘(StarGr‘𝑁)) = (0...𝑁))
2018, 19ax-mp 5 . . . . . . . . . . 11 (Vtx‘(StarGr‘𝑁)) = (0...𝑁)
2115, 17, 203eqtri 2756 . . . . . . . . . 10 𝑊 = (0...𝑁)
2221eqimssi 3996 . . . . . . . . 9 𝑊 ⊆ (0...𝑁)
2322a1i 11 . . . . . . . 8 (𝐹:𝐶1-1-onto𝑊𝑊 ⊆ (0...𝑁))
2414, 23fssd 6669 . . . . . . 7 (𝐹:𝐶1-1-onto𝑊𝐹:𝐶⟶(0...𝑁))
2524ad2antrl 728 . . . . . 6 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → 𝐹:𝐶⟶(0...𝑁))
2625adantr 480 . . . . 5 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑖𝐸𝑖𝐶)) → 𝐹:𝐶⟶(0...𝑁))
2726fimassd 6673 . . . 4 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑖𝐸𝑖𝐶)) → (𝐹𝑖) ⊆ (0...𝑁))
28 simplll 774 . . . . . 6 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → 𝐺 ∈ USGraph)
29 simpl 482 . . . . . 6 ((𝑖𝐸𝑖𝐶) → 𝑖𝐸)
305, 9usgredg 29144 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑖𝐸) → ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑖 = {𝑎, 𝑏}))
3128, 29, 30syl2an 596 . . . . 5 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑖𝐸𝑖𝐶)) → ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑖 = {𝑎, 𝑏}))
32 vex 3440 . . . . . . . . . . . . . . . . 17 𝑎 ∈ V
33 vex 3440 . . . . . . . . . . . . . . . . 17 𝑏 ∈ V
3432, 33prss 4771 . . . . . . . . . . . . . . . 16 ((𝑎𝐶𝑏𝐶) ↔ {𝑎, 𝑏} ⊆ 𝐶)
35 elclnbgrelnbgr 47819 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑎 ∈ (𝐺 ClNeighbVtx 𝑋) ∧ 𝑎𝑋) → 𝑎 ∈ (𝐺 NeighbVtx 𝑋))
3635expcom 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑎𝑋 → (𝑎 ∈ (𝐺 ClNeighbVtx 𝑋) → 𝑎 ∈ (𝐺 NeighbVtx 𝑋)))
374eleq2i 2820 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑎𝐶𝑎 ∈ (𝐺 ClNeighbVtx 𝑋))
38 isubgr3stgr.u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑈 = (𝐺 NeighbVtx 𝑋)
3938eleq2i 2820 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑎𝑈𝑎 ∈ (𝐺 NeighbVtx 𝑋))
4036, 37, 393imtr4g 296 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎𝑋 → (𝑎𝐶𝑎𝑈))
41 elclnbgrelnbgr 47819 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑏 ∈ (𝐺 ClNeighbVtx 𝑋) ∧ 𝑏𝑋) → 𝑏 ∈ (𝐺 NeighbVtx 𝑋))
4241expcom 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑏𝑋 → (𝑏 ∈ (𝐺 ClNeighbVtx 𝑋) → 𝑏 ∈ (𝐺 NeighbVtx 𝑋)))
434eleq2i 2820 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑏𝐶𝑏 ∈ (𝐺 ClNeighbVtx 𝑋))
4438eleq2i 2820 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑏𝑈𝑏 ∈ (𝐺 NeighbVtx 𝑋))
4542, 43, 443imtr4g 296 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑏𝑋 → (𝑏𝐶𝑏𝑈))
4640, 45im2anan9r 621 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑏𝑋𝑎𝑋) → ((𝑎𝐶𝑏𝐶) → (𝑎𝑈𝑏𝑈)))
4746imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑏𝑋𝑎𝑋) ∧ (𝑎𝐶𝑏𝐶)) → (𝑎𝑈𝑏𝑈))
48473adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑏𝑋𝑎𝑋) ∧ (𝑎𝐶𝑏𝐶) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) → (𝑎𝑈𝑏𝑈))
49 preq1 4685 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = 𝑎 → {𝑥, 𝑦} = {𝑎, 𝑦})
50 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = 𝑎𝐸 = 𝐸)
5149, 50neleq12d 3034 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = 𝑎 → ({𝑥, 𝑦} ∉ 𝐸 ↔ {𝑎, 𝑦} ∉ 𝐸))
52 preq2 4686 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = 𝑏 → {𝑎, 𝑦} = {𝑎, 𝑏})
53 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = 𝑏𝐸 = 𝐸)
5452, 53neleq12d 3034 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 = 𝑏 → ({𝑎, 𝑦} ∉ 𝐸 ↔ {𝑎, 𝑏} ∉ 𝐸))
5551, 54rspc2v 3588 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎𝑈𝑏𝑈) → (∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸 → {𝑎, 𝑏} ∉ 𝐸))
5648, 55syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑏𝑋𝑎𝑋) ∧ (𝑎𝐶𝑏𝐶) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) → (∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸 → {𝑎, 𝑏} ∉ 𝐸))
57 pm2.24nel 3042 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ({𝑎, 𝑏} ∈ 𝐸 → ({𝑎, 𝑏} ∉ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
5857adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸) → ({𝑎, 𝑏} ∉ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
59583ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑏𝑋𝑎𝑋) ∧ (𝑎𝐶𝑏𝐶) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) → ({𝑎, 𝑏} ∉ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
6056, 59syld 47 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑏𝑋𝑎𝑋) ∧ (𝑎𝐶𝑏𝐶) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) → (∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
61603exp 1119 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑏𝑋𝑎𝑋) → ((𝑎𝐶𝑏𝐶) → ((𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸) → (∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))))
6261com24 95 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑏𝑋𝑎𝑋) → (∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸 → ((𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸) → ((𝑎𝐶𝑏𝐶) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))))
6362adantld 490 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏𝑋𝑎𝑋) → (((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸) → ((𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸) → ((𝑎𝐶𝑏𝐶) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))))
6463adantld 490 . . . . . . . . . . . . . . . . . . . 20 ((𝑏𝑋𝑎𝑋) → (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) → ((𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸) → ((𝑎𝐶𝑏𝐶) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))))
6564adantrd 491 . . . . . . . . . . . . . . . . . . 19 ((𝑏𝑋𝑎𝑋) → ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → ((𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸) → ((𝑎𝐶𝑏𝐶) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))))
6665imp4c 423 . . . . . . . . . . . . . . . . . 18 ((𝑏𝑋𝑎𝑋) → ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
67 simpl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → 𝑏 = 𝑋)
68 simpllr 775 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶)) → (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0))
6968adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0))
70 simplrl 776 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶)) → 𝑎𝑏)
7170necomd 2980 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶)) → 𝑏𝑎)
7271adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → 𝑏𝑎)
73 simprrr 781 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → 𝑏𝐶)
74 simprrl 780 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → 𝑎𝐶)
755, 38, 4, 18, 16, 15, 9isubgr3stgrlem4 47963 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 = 𝑋 ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑏𝑎𝑏𝐶𝑎𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑏, 𝑎}) = {0, 𝑧})
7667, 69, 72, 73, 74, 75syl113anc 1384 . . . . . . . . . . . . . . . . . . . 20 ((𝑏 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑏, 𝑎}) = {0, 𝑧})
77 prcom 4684 . . . . . . . . . . . . . . . . . . . . . . 23 {𝑎, 𝑏} = {𝑏, 𝑎}
7877imaeq2i 6009 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹 “ {𝑎, 𝑏}) = (𝐹 “ {𝑏, 𝑎})
7978eqeq1i 2734 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 “ {𝑎, 𝑏}) = {0, 𝑧} ↔ (𝐹 “ {𝑏, 𝑎}) = {0, 𝑧})
8079rexbii 3076 . . . . . . . . . . . . . . . . . . . 20 (∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧} ↔ ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑏, 𝑎}) = {0, 𝑧})
8176, 80sylibr 234 . . . . . . . . . . . . . . . . . . 19 ((𝑏 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})
8281ex 412 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑋 → ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
83 simpl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → 𝑎 = 𝑋)
8468adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0))
8570adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → 𝑎𝑏)
86 simprrl 780 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → 𝑎𝐶)
87 simprrr 781 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → 𝑏𝐶)
885, 38, 4, 18, 16, 15, 9isubgr3stgrlem4 47963 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 = 𝑋 ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ (𝑎𝑏𝑎𝐶𝑏𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})
8983, 84, 85, 86, 87, 88syl113anc 1384 . . . . . . . . . . . . . . . . . . 19 ((𝑎 = 𝑋 ∧ (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶))) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})
9089ex 412 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑋 → ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
9166, 82, 90pm2.61iine 3015 . . . . . . . . . . . . . . . . 17 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) ∧ (𝑎𝐶𝑏𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})
9291ex 412 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) → ((𝑎𝐶𝑏𝐶) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
9334, 92biimtrrid 243 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏 ∧ {𝑎, 𝑏} ∈ 𝐸)) → ({𝑎, 𝑏} ⊆ 𝐶 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
9493exp32 420 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → (𝑎𝑏 → ({𝑎, 𝑏} ∈ 𝐸 → ({𝑎, 𝑏} ⊆ 𝐶 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))))
9594adantrd 491 . . . . . . . . . . . . 13 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → ((𝑎𝑏𝑖 = {𝑎, 𝑏}) → ({𝑎, 𝑏} ∈ 𝐸 → ({𝑎, 𝑏} ⊆ 𝐶 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))))
9695imp 406 . . . . . . . . . . . 12 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏𝑖 = {𝑎, 𝑏})) → ({𝑎, 𝑏} ∈ 𝐸 → ({𝑎, 𝑏} ⊆ 𝐶 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})))
9796com23 86 . . . . . . . . . . 11 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏𝑖 = {𝑎, 𝑏})) → ({𝑎, 𝑏} ⊆ 𝐶 → ({𝑎, 𝑏} ∈ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})))
98 sseq1 3961 . . . . . . . . . . . . . 14 (𝑖 = {𝑎, 𝑏} → (𝑖𝐶 ↔ {𝑎, 𝑏} ⊆ 𝐶))
99 eleq1 2816 . . . . . . . . . . . . . . 15 (𝑖 = {𝑎, 𝑏} → (𝑖𝐸 ↔ {𝑎, 𝑏} ∈ 𝐸))
100 imaeq2 6007 . . . . . . . . . . . . . . . . 17 (𝑖 = {𝑎, 𝑏} → (𝐹𝑖) = (𝐹 “ {𝑎, 𝑏}))
101100eqeq1d 2731 . . . . . . . . . . . . . . . 16 (𝑖 = {𝑎, 𝑏} → ((𝐹𝑖) = {0, 𝑧} ↔ (𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
102101rexbidv 3153 . . . . . . . . . . . . . . 15 (𝑖 = {𝑎, 𝑏} → (∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧} ↔ ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))
10399, 102imbi12d 344 . . . . . . . . . . . . . 14 (𝑖 = {𝑎, 𝑏} → ((𝑖𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧}) ↔ ({𝑎, 𝑏} ∈ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧})))
10498, 103imbi12d 344 . . . . . . . . . . . . 13 (𝑖 = {𝑎, 𝑏} → ((𝑖𝐶 → (𝑖𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧})) ↔ ({𝑎, 𝑏} ⊆ 𝐶 → ({𝑎, 𝑏} ∈ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))))
105104adantl 481 . . . . . . . . . . . 12 ((𝑎𝑏𝑖 = {𝑎, 𝑏}) → ((𝑖𝐶 → (𝑖𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧})) ↔ ({𝑎, 𝑏} ⊆ 𝐶 → ({𝑎, 𝑏} ∈ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))))
106105adantl 481 . . . . . . . . . . 11 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏𝑖 = {𝑎, 𝑏})) → ((𝑖𝐶 → (𝑖𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧})) ↔ ({𝑎, 𝑏} ⊆ 𝐶 → ({𝑎, 𝑏} ∈ 𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝑎, 𝑏}) = {0, 𝑧}))))
10797, 106mpbird 257 . . . . . . . . . 10 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑎𝑏𝑖 = {𝑎, 𝑏})) → (𝑖𝐶 → (𝑖𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧})))
108107ex 412 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → ((𝑎𝑏𝑖 = {𝑎, 𝑏}) → (𝑖𝐶 → (𝑖𝐸 → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧}))))
109108com24 95 . . . . . . . 8 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → (𝑖𝐸 → (𝑖𝐶 → ((𝑎𝑏𝑖 = {𝑎, 𝑏}) → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧}))))
110109imp32 418 . . . . . . 7 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑖𝐸𝑖𝐶)) → ((𝑎𝑏𝑖 = {𝑎, 𝑏}) → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧}))
111110a1d 25 . . . . . 6 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑖𝐸𝑖𝐶)) → ((𝑎𝑉𝑏𝑉) → ((𝑎𝑏𝑖 = {𝑎, 𝑏}) → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧})))
112111rexlimdvv 3185 . . . . 5 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑖𝐸𝑖𝐶)) → (∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑖 = {𝑎, 𝑏}) → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧}))
11331, 112mpd 15 . . . 4 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑖𝐸𝑖𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧})
114 stgredgel 47951 . . . . 5 (𝑁 ∈ ℕ0 → ((𝐹𝑖) ∈ (Edg‘(StarGr‘𝑁)) ↔ ((𝐹𝑖) ⊆ (0...𝑁) ∧ ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧})))
11518, 114ax-mp 5 . . . 4 ((𝐹𝑖) ∈ (Edg‘(StarGr‘𝑁)) ↔ ((𝐹𝑖) ⊆ (0...𝑁) ∧ ∃𝑧 ∈ (1...𝑁)(𝐹𝑖) = {0, 𝑧}))
11627, 113, 115sylanbrc 583 . . 3 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ (𝑖𝐸𝑖𝐶)) → (𝐹𝑖) ∈ (Edg‘(StarGr‘𝑁)))
11713, 116sylbida 592 . 2 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑖𝐼) → (𝐹𝑖) ∈ (Edg‘(StarGr‘𝑁)))
118 isubgr3stgr.h . 2 𝐻 = (𝑖𝐼 ↦ (𝐹𝑖))
119117, 118fmptd 7048 1 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → 𝐻:𝐼⟶(Edg‘(StarGr‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wnel 3029  wral 3044  wrex 3053  wss 3903  {cpr 4579  cmpt 5173  cima 5622  wf 6478  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  0cc0 11009  1c1 11010  0cn0 12384  ...cfz 13410  chash 14237  Vtxcvtx 28941  Edgcedg 28992  UHGraphcuhgr 29001  USGraphcusgr 29094   NeighbVtx cnbgr 29277   ClNeighbVtx cclnbgr 47812   ISubGr cisubgr 47854  StarGrcstgr 47945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-xnn0 12458  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-hash 14238  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-edgf 28934  df-vtx 28943  df-iedg 28944  df-edg 28993  df-uhgr 29003  df-upgr 29027  df-umgr 29028  df-uspgr 29095  df-usgr 29096  df-nbgr 29278  df-clnbgr 47813  df-isubgr 47855  df-stgr 47946
This theorem is referenced by:  isubgr3stgrlem8  47967
  Copyright terms: Public domain W3C validator