| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > filfbas | Structured version Visualization version GIF version | ||
| Description: A filter is a filter base. (Contributed by Jeff Hankins, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Jul-2015.) |
| Ref | Expression |
|---|---|
| filfbas | ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfil 23732 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∩ cin 3902 ∅c0 4284 𝒫 cpw 4551 ‘cfv 6482 fBascfbas 21249 Filcfil 23730 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fv 6490 df-fil 23731 |
| This theorem is referenced by: 0nelfil 23734 filsspw 23736 filelss 23737 filin 23739 filtop 23740 snfbas 23751 fgfil 23760 elfilss 23761 filfinnfr 23762 fgabs 23764 filconn 23768 fgtr 23775 trfg 23776 ufilb 23791 ufilmax 23792 isufil2 23793 ssufl 23803 ufileu 23804 filufint 23805 ufilen 23815 fmfg 23834 fmufil 23844 fmid 23845 fmco 23846 ufldom 23847 hausflim 23866 flimrest 23868 flimclslem 23869 flfnei 23876 isflf 23878 flfcnp 23889 fclsrest 23909 fclsfnflim 23912 flimfnfcls 23913 isfcf 23919 cnpfcfi 23925 cnpfcf 23926 cnextcn 23952 cfilufg 24178 neipcfilu 24181 cnextucn 24188 ucnextcn 24189 cfilresi 25193 cfilres 25194 cmetss 25214 relcmpcmet 25216 cfilucfil3 25218 minveclem4a 25328 filnetlem4 36355 |
| Copyright terms: Public domain | W3C validator |