| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > filfbas | Structured version Visualization version GIF version | ||
| Description: A filter is a filter base. (Contributed by Jeff Hankins, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Jul-2015.) |
| Ref | Expression |
|---|---|
| filfbas | ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfil 23762 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∩ cin 3896 ∅c0 4280 𝒫 cpw 4547 ‘cfv 6481 fBascfbas 21279 Filcfil 23760 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-fil 23761 |
| This theorem is referenced by: 0nelfil 23764 filsspw 23766 filelss 23767 filin 23769 filtop 23770 snfbas 23781 fgfil 23790 elfilss 23791 filfinnfr 23792 fgabs 23794 filconn 23798 fgtr 23805 trfg 23806 ufilb 23821 ufilmax 23822 isufil2 23823 ssufl 23833 ufileu 23834 filufint 23835 ufilen 23845 fmfg 23864 fmufil 23874 fmid 23875 fmco 23876 ufldom 23877 hausflim 23896 flimrest 23898 flimclslem 23899 flfnei 23906 isflf 23908 flfcnp 23919 fclsrest 23939 fclsfnflim 23942 flimfnfcls 23943 isfcf 23949 cnpfcfi 23955 cnpfcf 23956 cnextcn 23982 cfilufg 24207 neipcfilu 24210 cnextucn 24217 ucnextcn 24218 cfilresi 25222 cfilres 25223 cmetss 25243 relcmpcmet 25245 cfilucfil3 25247 minveclem4a 25357 filnetlem4 36423 |
| Copyright terms: Public domain | W3C validator |