Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > filfbas | Structured version Visualization version GIF version |
Description: A filter is a filter base. (Contributed by Jeff Hankins, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Jul-2015.) |
Ref | Expression |
---|---|
filfbas | ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfil 22979 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹))) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2944 ∀wral 3065 ∩ cin 3890 ∅c0 4261 𝒫 cpw 4538 ‘cfv 6430 fBascfbas 20566 Filcfil 22977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fv 6438 df-fil 22978 |
This theorem is referenced by: 0nelfil 22981 filsspw 22983 filelss 22984 filin 22986 filtop 22987 snfbas 22998 fgfil 23007 elfilss 23008 filfinnfr 23009 fgabs 23011 filconn 23015 fgtr 23022 trfg 23023 ufilb 23038 ufilmax 23039 isufil2 23040 ssufl 23050 ufileu 23051 filufint 23052 ufilen 23062 fmfg 23081 fmufil 23091 fmid 23092 fmco 23093 ufldom 23094 hausflim 23113 flimrest 23115 flimclslem 23116 flfnei 23123 isflf 23125 flfcnp 23136 fclsrest 23156 fclsfnflim 23159 flimfnfcls 23160 isfcf 23166 cnpfcfi 23172 cnpfcf 23173 cnextcn 23199 cfilufg 23426 neipcfilu 23429 cnextucn 23436 ucnextcn 23437 cfilresi 24440 cfilres 24441 cmetss 24461 relcmpcmet 24463 cfilucfil3 24465 minveclem4a 24575 filnetlem4 34549 |
Copyright terms: Public domain | W3C validator |