| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > filfbas | Structured version Visualization version GIF version | ||
| Description: A filter is a filter base. (Contributed by Jeff Hankins, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Jul-2015.) |
| Ref | Expression |
|---|---|
| filfbas | ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfil 23710 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∩ cin 3910 ∅c0 4292 𝒫 cpw 4559 ‘cfv 6499 fBascfbas 21228 Filcfil 23708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fv 6507 df-fil 23709 |
| This theorem is referenced by: 0nelfil 23712 filsspw 23714 filelss 23715 filin 23717 filtop 23718 snfbas 23729 fgfil 23738 elfilss 23739 filfinnfr 23740 fgabs 23742 filconn 23746 fgtr 23753 trfg 23754 ufilb 23769 ufilmax 23770 isufil2 23771 ssufl 23781 ufileu 23782 filufint 23783 ufilen 23793 fmfg 23812 fmufil 23822 fmid 23823 fmco 23824 ufldom 23825 hausflim 23844 flimrest 23846 flimclslem 23847 flfnei 23854 isflf 23856 flfcnp 23867 fclsrest 23887 fclsfnflim 23890 flimfnfcls 23891 isfcf 23897 cnpfcfi 23903 cnpfcf 23904 cnextcn 23930 cfilufg 24156 neipcfilu 24159 cnextucn 24166 ucnextcn 24167 cfilresi 25171 cfilres 25172 cmetss 25192 relcmpcmet 25194 cfilucfil3 25196 minveclem4a 25306 filnetlem4 36342 |
| Copyright terms: Public domain | W3C validator |