MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filfbas Structured version   Visualization version   GIF version

Theorem filfbas 22602
Description: A filter is a filter base. (Contributed by Jeff Hankins, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Jul-2015.)
Assertion
Ref Expression
filfbas (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))

Proof of Theorem filfbas
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isfil 22601 . 2 (𝐹 ∈ (Fil‘𝑋) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹)))
21simplbi 501 1 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2114  wne 2935  wral 3054  cin 3843  c0 4212  𝒫 cpw 4489  cfv 6340  fBascfbas 20208  Filcfil 22599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5168  ax-nul 5175  ax-pr 5297
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-op 4524  df-uni 4798  df-br 5032  df-opab 5094  df-mpt 5112  df-id 5430  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-iota 6298  df-fun 6342  df-fv 6348  df-fil 22600
This theorem is referenced by:  0nelfil  22603  filsspw  22605  filelss  22606  filin  22608  filtop  22609  snfbas  22620  fgfil  22629  elfilss  22630  filfinnfr  22631  fgabs  22633  filconn  22637  fgtr  22644  trfg  22645  ufilb  22660  ufilmax  22661  isufil2  22662  ssufl  22672  ufileu  22673  filufint  22674  ufilen  22684  fmfg  22703  fmufil  22713  fmid  22714  fmco  22715  ufldom  22716  hausflim  22735  flimrest  22737  flimclslem  22738  flfnei  22745  isflf  22747  flfcnp  22758  fclsrest  22778  fclsfnflim  22781  flimfnfcls  22782  isfcf  22788  cnpfcfi  22794  cnpfcf  22795  cnextcn  22821  cfilufg  23048  neipcfilu  23051  cnextucn  23058  ucnextcn  23059  cfilresi  24050  cfilres  24051  cmetss  24071  relcmpcmet  24073  cfilucfil3  24075  minveclem4a  24185  filnetlem4  34216
  Copyright terms: Public domain W3C validator