![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > filfbas | Structured version Visualization version GIF version |
Description: A filter is a filter base. (Contributed by Jeff Hankins, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Jul-2015.) |
Ref | Expression |
---|---|
filfbas | ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfil 23871 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹))) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 ∩ cin 3962 ∅c0 4339 𝒫 cpw 4605 ‘cfv 6563 fBascfbas 21370 Filcfil 23869 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fv 6571 df-fil 23870 |
This theorem is referenced by: 0nelfil 23873 filsspw 23875 filelss 23876 filin 23878 filtop 23879 snfbas 23890 fgfil 23899 elfilss 23900 filfinnfr 23901 fgabs 23903 filconn 23907 fgtr 23914 trfg 23915 ufilb 23930 ufilmax 23931 isufil2 23932 ssufl 23942 ufileu 23943 filufint 23944 ufilen 23954 fmfg 23973 fmufil 23983 fmid 23984 fmco 23985 ufldom 23986 hausflim 24005 flimrest 24007 flimclslem 24008 flfnei 24015 isflf 24017 flfcnp 24028 fclsrest 24048 fclsfnflim 24051 flimfnfcls 24052 isfcf 24058 cnpfcfi 24064 cnpfcf 24065 cnextcn 24091 cfilufg 24318 neipcfilu 24321 cnextucn 24328 ucnextcn 24329 cfilresi 25343 cfilres 25344 cmetss 25364 relcmpcmet 25366 cfilucfil3 25368 minveclem4a 25478 filnetlem4 36364 |
Copyright terms: Public domain | W3C validator |