| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > filfbas | Structured version Visualization version GIF version | ||
| Description: A filter is a filter base. (Contributed by Jeff Hankins, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Jul-2015.) |
| Ref | Expression |
|---|---|
| filfbas | ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfil 23734 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∩ cin 3913 ∅c0 4296 𝒫 cpw 4563 ‘cfv 6511 fBascfbas 21252 Filcfil 23732 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fv 6519 df-fil 23733 |
| This theorem is referenced by: 0nelfil 23736 filsspw 23738 filelss 23739 filin 23741 filtop 23742 snfbas 23753 fgfil 23762 elfilss 23763 filfinnfr 23764 fgabs 23766 filconn 23770 fgtr 23777 trfg 23778 ufilb 23793 ufilmax 23794 isufil2 23795 ssufl 23805 ufileu 23806 filufint 23807 ufilen 23817 fmfg 23836 fmufil 23846 fmid 23847 fmco 23848 ufldom 23849 hausflim 23868 flimrest 23870 flimclslem 23871 flfnei 23878 isflf 23880 flfcnp 23891 fclsrest 23911 fclsfnflim 23914 flimfnfcls 23915 isfcf 23921 cnpfcfi 23927 cnpfcf 23928 cnextcn 23954 cfilufg 24180 neipcfilu 24183 cnextucn 24190 ucnextcn 24191 cfilresi 25195 cfilres 25196 cmetss 25216 relcmpcmet 25218 cfilucfil3 25220 minveclem4a 25330 filnetlem4 36369 |
| Copyright terms: Public domain | W3C validator |