Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > filfbas | Structured version Visualization version GIF version |
Description: A filter is a filter base. (Contributed by Jeff Hankins, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Jul-2015.) |
Ref | Expression |
---|---|
filfbas | ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfil 22601 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹))) | |
2 | 1 | simplbi 501 | 1 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2114 ≠ wne 2935 ∀wral 3054 ∩ cin 3843 ∅c0 4212 𝒫 cpw 4489 ‘cfv 6340 fBascfbas 20208 Filcfil 22599 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5168 ax-nul 5175 ax-pr 5297 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-rab 3063 df-v 3401 df-sbc 3682 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-op 4524 df-uni 4798 df-br 5032 df-opab 5094 df-mpt 5112 df-id 5430 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-iota 6298 df-fun 6342 df-fv 6348 df-fil 22600 |
This theorem is referenced by: 0nelfil 22603 filsspw 22605 filelss 22606 filin 22608 filtop 22609 snfbas 22620 fgfil 22629 elfilss 22630 filfinnfr 22631 fgabs 22633 filconn 22637 fgtr 22644 trfg 22645 ufilb 22660 ufilmax 22661 isufil2 22662 ssufl 22672 ufileu 22673 filufint 22674 ufilen 22684 fmfg 22703 fmufil 22713 fmid 22714 fmco 22715 ufldom 22716 hausflim 22735 flimrest 22737 flimclslem 22738 flfnei 22745 isflf 22747 flfcnp 22758 fclsrest 22778 fclsfnflim 22781 flimfnfcls 22782 isfcf 22788 cnpfcfi 22794 cnpfcf 22795 cnextcn 22821 cfilufg 23048 neipcfilu 23051 cnextucn 23058 ucnextcn 23059 cfilresi 24050 cfilres 24051 cmetss 24071 relcmpcmet 24073 cfilucfil3 24075 minveclem4a 24185 filnetlem4 34216 |
Copyright terms: Public domain | W3C validator |