| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > filfbas | Structured version Visualization version GIF version | ||
| Description: A filter is a filter base. (Contributed by Jeff Hankins, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Jul-2015.) |
| Ref | Expression |
|---|---|
| filfbas | ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfil 23785 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 ∩ cin 3925 ∅c0 4308 𝒫 cpw 4575 ‘cfv 6531 fBascfbas 21303 Filcfil 23783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fv 6539 df-fil 23784 |
| This theorem is referenced by: 0nelfil 23787 filsspw 23789 filelss 23790 filin 23792 filtop 23793 snfbas 23804 fgfil 23813 elfilss 23814 filfinnfr 23815 fgabs 23817 filconn 23821 fgtr 23828 trfg 23829 ufilb 23844 ufilmax 23845 isufil2 23846 ssufl 23856 ufileu 23857 filufint 23858 ufilen 23868 fmfg 23887 fmufil 23897 fmid 23898 fmco 23899 ufldom 23900 hausflim 23919 flimrest 23921 flimclslem 23922 flfnei 23929 isflf 23931 flfcnp 23942 fclsrest 23962 fclsfnflim 23965 flimfnfcls 23966 isfcf 23972 cnpfcfi 23978 cnpfcf 23979 cnextcn 24005 cfilufg 24231 neipcfilu 24234 cnextucn 24241 ucnextcn 24242 cfilresi 25247 cfilres 25248 cmetss 25268 relcmpcmet 25270 cfilucfil3 25272 minveclem4a 25382 filnetlem4 36399 |
| Copyright terms: Public domain | W3C validator |