Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > filfbas | Structured version Visualization version GIF version |
Description: A filter is a filter base. (Contributed by Jeff Hankins, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Jul-2015.) |
Ref | Expression |
---|---|
filfbas | ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfil 23047 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹))) | |
2 | 1 | simplbi 499 | 1 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 ≠ wne 2941 ∀wral 3062 ∩ cin 3891 ∅c0 4262 𝒫 cpw 4539 ‘cfv 6458 fBascfbas 20634 Filcfil 23045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fv 6466 df-fil 23046 |
This theorem is referenced by: 0nelfil 23049 filsspw 23051 filelss 23052 filin 23054 filtop 23055 snfbas 23066 fgfil 23075 elfilss 23076 filfinnfr 23077 fgabs 23079 filconn 23083 fgtr 23090 trfg 23091 ufilb 23106 ufilmax 23107 isufil2 23108 ssufl 23118 ufileu 23119 filufint 23120 ufilen 23130 fmfg 23149 fmufil 23159 fmid 23160 fmco 23161 ufldom 23162 hausflim 23181 flimrest 23183 flimclslem 23184 flfnei 23191 isflf 23193 flfcnp 23204 fclsrest 23224 fclsfnflim 23227 flimfnfcls 23228 isfcf 23234 cnpfcfi 23240 cnpfcf 23241 cnextcn 23267 cfilufg 23494 neipcfilu 23497 cnextucn 23504 ucnextcn 23505 cfilresi 24508 cfilres 24509 cmetss 24529 relcmpcmet 24531 cfilucfil3 24533 minveclem4a 24643 filnetlem4 34619 |
Copyright terms: Public domain | W3C validator |