| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fgfil | Structured version Visualization version GIF version | ||
| Description: A filter generates itself. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| Ref | Expression |
|---|---|
| fgfil | ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑋filGen𝐹) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | filfbas 23742 | . . . . 5 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) | |
| 2 | elfg 23765 | . . . . 5 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡))) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡))) |
| 4 | filss 23747 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ∈ 𝐹 ∧ 𝑡 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑡)) → 𝑡 ∈ 𝐹) | |
| 5 | 4 | 3exp2 1355 | . . . . . . 7 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑥 ∈ 𝐹 → (𝑡 ⊆ 𝑋 → (𝑥 ⊆ 𝑡 → 𝑡 ∈ 𝐹)))) |
| 6 | 5 | com34 91 | . . . . . 6 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑥 ∈ 𝐹 → (𝑥 ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐹)))) |
| 7 | 6 | rexlimdv 3133 | . . . . 5 ⊢ (𝐹 ∈ (Fil‘𝑋) → (∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐹))) |
| 8 | 7 | impcomd 411 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → ((𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡) → 𝑡 ∈ 𝐹)) |
| 9 | 3, 8 | sylbid 240 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑡 ∈ (𝑋filGen𝐹) → 𝑡 ∈ 𝐹)) |
| 10 | 9 | ssrdv 3955 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑋filGen𝐹) ⊆ 𝐹) |
| 11 | ssfg 23766 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹)) | |
| 12 | 1, 11 | syl 17 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹)) |
| 13 | 10, 12 | eqssd 3967 | 1 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑋filGen𝐹) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 ⊆ wss 3917 ‘cfv 6514 (class class class)co 7390 fBascfbas 21259 filGencfg 21260 Filcfil 23739 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-fbas 21268 df-fg 21269 df-fil 23740 |
| This theorem is referenced by: elfilss 23770 fgtr 23784 fmid 23854 isfcf 23928 cnextcn 23961 filnetlem4 36376 |
| Copyright terms: Public domain | W3C validator |