MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fgfil Structured version   Visualization version   GIF version

Theorem fgfil 23698
Description: A filter generates itself. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fgfil (𝐹 ∈ (Fil‘𝑋) → (𝑋filGen𝐹) = 𝐹)

Proof of Theorem fgfil
Dummy variables 𝑥 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 filfbas 23671 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
2 elfg 23694 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡𝑋 ∧ ∃𝑥𝐹 𝑥𝑡)))
31, 2syl 17 . . . 4 (𝐹 ∈ (Fil‘𝑋) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡𝑋 ∧ ∃𝑥𝐹 𝑥𝑡)))
4 filss 23676 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥𝐹𝑡𝑋𝑥𝑡)) → 𝑡𝐹)
543exp2 1353 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → (𝑥𝐹 → (𝑡𝑋 → (𝑥𝑡𝑡𝐹))))
65com34 91 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → (𝑥𝐹 → (𝑥𝑡 → (𝑡𝑋𝑡𝐹))))
76rexlimdv 3152 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → (∃𝑥𝐹 𝑥𝑡 → (𝑡𝑋𝑡𝐹)))
87impcomd 411 . . . 4 (𝐹 ∈ (Fil‘𝑋) → ((𝑡𝑋 ∧ ∃𝑥𝐹 𝑥𝑡) → 𝑡𝐹))
93, 8sylbid 239 . . 3 (𝐹 ∈ (Fil‘𝑋) → (𝑡 ∈ (𝑋filGen𝐹) → 𝑡𝐹))
109ssrdv 3988 . 2 (𝐹 ∈ (Fil‘𝑋) → (𝑋filGen𝐹) ⊆ 𝐹)
11 ssfg 23695 . . 3 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹))
121, 11syl 17 . 2 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹))
1310, 12eqssd 3999 1 (𝐹 ∈ (Fil‘𝑋) → (𝑋filGen𝐹) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  wrex 3069  wss 3948  cfv 6543  (class class class)co 7412  fBascfbas 21220  filGencfg 21221  Filcfil 23668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-fbas 21229  df-fg 21230  df-fil 23669
This theorem is referenced by:  elfilss  23699  fgtr  23713  fmid  23783  isfcf  23857  cnextcn  23890  filnetlem4  35729
  Copyright terms: Public domain W3C validator