MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fgfil Structured version   Visualization version   GIF version

Theorem fgfil 22726
Description: A filter generates itself. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fgfil (𝐹 ∈ (Fil‘𝑋) → (𝑋filGen𝐹) = 𝐹)

Proof of Theorem fgfil
Dummy variables 𝑥 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 filfbas 22699 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
2 elfg 22722 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡𝑋 ∧ ∃𝑥𝐹 𝑥𝑡)))
31, 2syl 17 . . . 4 (𝐹 ∈ (Fil‘𝑋) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡𝑋 ∧ ∃𝑥𝐹 𝑥𝑡)))
4 filss 22704 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥𝐹𝑡𝑋𝑥𝑡)) → 𝑡𝐹)
543exp2 1356 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → (𝑥𝐹 → (𝑡𝑋 → (𝑥𝑡𝑡𝐹))))
65com34 91 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → (𝑥𝐹 → (𝑥𝑡 → (𝑡𝑋𝑡𝐹))))
76rexlimdv 3192 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → (∃𝑥𝐹 𝑥𝑡 → (𝑡𝑋𝑡𝐹)))
87impcomd 415 . . . 4 (𝐹 ∈ (Fil‘𝑋) → ((𝑡𝑋 ∧ ∃𝑥𝐹 𝑥𝑡) → 𝑡𝐹))
93, 8sylbid 243 . . 3 (𝐹 ∈ (Fil‘𝑋) → (𝑡 ∈ (𝑋filGen𝐹) → 𝑡𝐹))
109ssrdv 3893 . 2 (𝐹 ∈ (Fil‘𝑋) → (𝑋filGen𝐹) ⊆ 𝐹)
11 ssfg 22723 . . 3 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹))
121, 11syl 17 . 2 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹))
1310, 12eqssd 3904 1 (𝐹 ∈ (Fil‘𝑋) → (𝑋filGen𝐹) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wrex 3052  wss 3853  cfv 6358  (class class class)co 7191  fBascfbas 20305  filGencfg 20306  Filcfil 22696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-fbas 20314  df-fg 20315  df-fil 22697
This theorem is referenced by:  elfilss  22727  fgtr  22741  fmid  22811  isfcf  22885  cnextcn  22918  filnetlem4  34256
  Copyright terms: Public domain W3C validator