| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fgfil | Structured version Visualization version GIF version | ||
| Description: A filter generates itself. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| Ref | Expression |
|---|---|
| fgfil | ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑋filGen𝐹) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | filfbas 23768 | . . . . 5 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) | |
| 2 | elfg 23791 | . . . . 5 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡))) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡))) |
| 4 | filss 23773 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ∈ 𝐹 ∧ 𝑡 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑡)) → 𝑡 ∈ 𝐹) | |
| 5 | 4 | 3exp2 1355 | . . . . . . 7 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑥 ∈ 𝐹 → (𝑡 ⊆ 𝑋 → (𝑥 ⊆ 𝑡 → 𝑡 ∈ 𝐹)))) |
| 6 | 5 | com34 91 | . . . . . 6 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑥 ∈ 𝐹 → (𝑥 ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐹)))) |
| 7 | 6 | rexlimdv 3132 | . . . . 5 ⊢ (𝐹 ∈ (Fil‘𝑋) → (∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐹))) |
| 8 | 7 | impcomd 411 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → ((𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡) → 𝑡 ∈ 𝐹)) |
| 9 | 3, 8 | sylbid 240 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑡 ∈ (𝑋filGen𝐹) → 𝑡 ∈ 𝐹)) |
| 10 | 9 | ssrdv 3949 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑋filGen𝐹) ⊆ 𝐹) |
| 11 | ssfg 23792 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹)) | |
| 12 | 1, 11 | syl 17 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹)) |
| 13 | 10, 12 | eqssd 3961 | 1 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑋filGen𝐹) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3911 ‘cfv 6499 (class class class)co 7369 fBascfbas 21284 filGencfg 21285 Filcfil 23765 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-fbas 21293 df-fg 21294 df-fil 23766 |
| This theorem is referenced by: elfilss 23796 fgtr 23810 fmid 23880 isfcf 23954 cnextcn 23987 filnetlem4 36362 |
| Copyright terms: Public domain | W3C validator |