![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fgfil | Structured version Visualization version GIF version |
Description: A filter generates itself. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
Ref | Expression |
---|---|
fgfil | ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑋filGen𝐹) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | filfbas 22176 | . . . . 5 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) | |
2 | elfg 22199 | . . . . 5 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡))) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡))) |
4 | filss 22181 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ∈ 𝐹 ∧ 𝑡 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑡)) → 𝑡 ∈ 𝐹) | |
5 | 4 | 3exp2 1335 | . . . . . . 7 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑥 ∈ 𝐹 → (𝑡 ⊆ 𝑋 → (𝑥 ⊆ 𝑡 → 𝑡 ∈ 𝐹)))) |
6 | 5 | com34 91 | . . . . . 6 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑥 ∈ 𝐹 → (𝑥 ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐹)))) |
7 | 6 | rexlimdv 3223 | . . . . 5 ⊢ (𝐹 ∈ (Fil‘𝑋) → (∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐹))) |
8 | 7 | impcomd 403 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → ((𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡) → 𝑡 ∈ 𝐹)) |
9 | 3, 8 | sylbid 232 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑡 ∈ (𝑋filGen𝐹) → 𝑡 ∈ 𝐹)) |
10 | 9 | ssrdv 3859 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑋filGen𝐹) ⊆ 𝐹) |
11 | ssfg 22200 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹)) | |
12 | 1, 11 | syl 17 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹)) |
13 | 10, 12 | eqssd 3870 | 1 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑋filGen𝐹) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1508 ∈ wcel 2051 ∃wrex 3084 ⊆ wss 3824 ‘cfv 6186 (class class class)co 6975 fBascfbas 20251 filGencfg 20252 Filcfil 22173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-sep 5057 ax-nul 5064 ax-pow 5116 ax-pr 5183 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-nel 3069 df-ral 3088 df-rex 3089 df-rab 3092 df-v 3412 df-sbc 3677 df-csb 3782 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-nul 4174 df-if 4346 df-pw 4419 df-sn 4437 df-pr 4439 df-op 4443 df-uni 4710 df-br 4927 df-opab 4989 df-mpt 5006 df-id 5309 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-iota 6150 df-fun 6188 df-fv 6194 df-ov 6978 df-oprab 6979 df-mpo 6980 df-fbas 20260 df-fg 20261 df-fil 22174 |
This theorem is referenced by: elfilss 22204 fgtr 22218 fmid 22288 isfcf 22362 cnextcn 22395 filnetlem4 33283 |
Copyright terms: Public domain | W3C validator |