![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fgfil | Structured version Visualization version GIF version |
Description: A filter generates itself. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
Ref | Expression |
---|---|
fgfil | ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑋filGen𝐹) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | filfbas 23877 | . . . . 5 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) | |
2 | elfg 23900 | . . . . 5 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡))) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡))) |
4 | filss 23882 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ∈ 𝐹 ∧ 𝑡 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑡)) → 𝑡 ∈ 𝐹) | |
5 | 4 | 3exp2 1354 | . . . . . . 7 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑥 ∈ 𝐹 → (𝑡 ⊆ 𝑋 → (𝑥 ⊆ 𝑡 → 𝑡 ∈ 𝐹)))) |
6 | 5 | com34 91 | . . . . . 6 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑥 ∈ 𝐹 → (𝑥 ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐹)))) |
7 | 6 | rexlimdv 3159 | . . . . 5 ⊢ (𝐹 ∈ (Fil‘𝑋) → (∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐹))) |
8 | 7 | impcomd 411 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → ((𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡) → 𝑡 ∈ 𝐹)) |
9 | 3, 8 | sylbid 240 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑡 ∈ (𝑋filGen𝐹) → 𝑡 ∈ 𝐹)) |
10 | 9 | ssrdv 4014 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑋filGen𝐹) ⊆ 𝐹) |
11 | ssfg 23901 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹)) | |
12 | 1, 11 | syl 17 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹)) |
13 | 10, 12 | eqssd 4026 | 1 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑋filGen𝐹) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 ⊆ wss 3976 ‘cfv 6573 (class class class)co 7448 fBascfbas 21375 filGencfg 21376 Filcfil 23874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-fbas 21384 df-fg 21385 df-fil 23875 |
This theorem is referenced by: elfilss 23905 fgtr 23919 fmid 23989 isfcf 24063 cnextcn 24096 filnetlem4 36347 |
Copyright terms: Public domain | W3C validator |