Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapss2 Structured version   Visualization version   GIF version

Theorem mapss2 45183
Description: Subset inheritance for set exponentiation. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
mapss2.a (𝜑𝐴𝑉)
mapss2.b (𝜑𝐵𝑊)
mapss2.c (𝜑𝐶𝑍)
mapss2.n (𝜑𝐶 ≠ ∅)
Assertion
Ref Expression
mapss2 (𝜑 → (𝐴𝐵 ↔ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)))

Proof of Theorem mapss2
Dummy variables 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapss2.b . . . . 5 (𝜑𝐵𝑊)
21adantr 480 . . . 4 ((𝜑𝐴𝐵) → 𝐵𝑊)
3 simpr 484 . . . 4 ((𝜑𝐴𝐵) → 𝐴𝐵)
4 mapss 8823 . . . 4 ((𝐵𝑊𝐴𝐵) → (𝐴m 𝐶) ⊆ (𝐵m 𝐶))
52, 3, 4syl2anc 584 . . 3 ((𝜑𝐴𝐵) → (𝐴m 𝐶) ⊆ (𝐵m 𝐶))
65ex 412 . 2 (𝜑 → (𝐴𝐵 → (𝐴m 𝐶) ⊆ (𝐵m 𝐶)))
7 mapss2.n . . . . . 6 (𝜑𝐶 ≠ ∅)
8 n0 4306 . . . . . 6 (𝐶 ≠ ∅ ↔ ∃𝑥 𝑥𝐶)
97, 8sylib 218 . . . . 5 (𝜑 → ∃𝑥 𝑥𝐶)
109adantr 480 . . . 4 ((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) → ∃𝑥 𝑥𝐶)
11 eqidd 2730 . . . . . . . . . . . 12 ((𝜑𝑥𝐶) → (𝑤𝐶𝑦) = (𝑤𝐶𝑦))
12 eqidd 2730 . . . . . . . . . . . 12 (((𝜑𝑥𝐶) ∧ 𝑤 = 𝑥) → 𝑦 = 𝑦)
13 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑥𝐶) → 𝑥𝐶)
14 vex 3442 . . . . . . . . . . . . 13 𝑦 ∈ V
1514a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥𝐶) → 𝑦 ∈ V)
1611, 12, 13, 15fvmptd 6941 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → ((𝑤𝐶𝑦)‘𝑥) = 𝑦)
1716eqcomd 2735 . . . . . . . . . 10 ((𝜑𝑥𝐶) → 𝑦 = ((𝑤𝐶𝑦)‘𝑥))
1817ad4ant13 751 . . . . . . . . 9 ((((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑥𝐶) ∧ 𝑦𝐴) → 𝑦 = ((𝑤𝐶𝑦)‘𝑥))
19 simplr 768 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑦𝐴) → (𝐴m 𝐶) ⊆ (𝐵m 𝐶))
20 simplr 768 . . . . . . . . . . . . . . . 16 (((𝜑𝑦𝐴) ∧ 𝑤𝐶) → 𝑦𝐴)
2120fmpttd 7053 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐴) → (𝑤𝐶𝑦):𝐶𝐴)
22 mapss2.a . . . . . . . . . . . . . . . . 17 (𝜑𝐴𝑉)
2322adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐴) → 𝐴𝑉)
24 mapss2.c . . . . . . . . . . . . . . . . 17 (𝜑𝐶𝑍)
2524adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐴) → 𝐶𝑍)
2623, 25elmapd 8774 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐴) → ((𝑤𝐶𝑦) ∈ (𝐴m 𝐶) ↔ (𝑤𝐶𝑦):𝐶𝐴))
2721, 26mpbird 257 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐴) → (𝑤𝐶𝑦) ∈ (𝐴m 𝐶))
2827adantlr 715 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑦𝐴) → (𝑤𝐶𝑦) ∈ (𝐴m 𝐶))
2919, 28sseldd 3938 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑦𝐴) → (𝑤𝐶𝑦) ∈ (𝐵m 𝐶))
30 elmapi 8783 . . . . . . . . . . . 12 ((𝑤𝐶𝑦) ∈ (𝐵m 𝐶) → (𝑤𝐶𝑦):𝐶𝐵)
3129, 30syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑦𝐴) → (𝑤𝐶𝑦):𝐶𝐵)
3231adantlr 715 . . . . . . . . . 10 ((((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑥𝐶) ∧ 𝑦𝐴) → (𝑤𝐶𝑦):𝐶𝐵)
33 simplr 768 . . . . . . . . . 10 ((((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑥𝐶) ∧ 𝑦𝐴) → 𝑥𝐶)
3432, 33ffvelcdmd 7023 . . . . . . . . 9 ((((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑥𝐶) ∧ 𝑦𝐴) → ((𝑤𝐶𝑦)‘𝑥) ∈ 𝐵)
3518, 34eqeltrd 2828 . . . . . . . 8 ((((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑥𝐶) ∧ 𝑦𝐴) → 𝑦𝐵)
3635ralrimiva 3121 . . . . . . 7 (((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑥𝐶) → ∀𝑦𝐴 𝑦𝐵)
37 dfss3 3926 . . . . . . 7 (𝐴𝐵 ↔ ∀𝑦𝐴 𝑦𝐵)
3836, 37sylibr 234 . . . . . 6 (((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑥𝐶) → 𝐴𝐵)
3938ex 412 . . . . 5 ((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) → (𝑥𝐶𝐴𝐵))
4039exlimdv 1933 . . . 4 ((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) → (∃𝑥 𝑥𝐶𝐴𝐵))
4110, 40mpd 15 . . 3 ((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) → 𝐴𝐵)
4241ex 412 . 2 (𝜑 → ((𝐴m 𝐶) ⊆ (𝐵m 𝐶) → 𝐴𝐵))
436, 42impbid 212 1 (𝜑 → (𝐴𝐵 ↔ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  Vcvv 3438  wss 3905  c0 4286  cmpt 5176  wf 6482  cfv 6486  (class class class)co 7353  m cmap 8760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-map 8762
This theorem is referenced by:  ovnovollem1  46638  ovnovollem2  46639
  Copyright terms: Public domain W3C validator