Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapss2 Structured version   Visualization version   GIF version

Theorem mapss2 40202
Description: Subset inheritance for set exponentiation. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
mapss2.a (𝜑𝐴𝑉)
mapss2.b (𝜑𝐵𝑊)
mapss2.c (𝜑𝐶𝑍)
mapss2.n (𝜑𝐶 ≠ ∅)
Assertion
Ref Expression
mapss2 (𝜑 → (𝐴𝐵 ↔ (𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶)))

Proof of Theorem mapss2
Dummy variables 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapss2.b . . . . 5 (𝜑𝐵𝑊)
21adantr 474 . . . 4 ((𝜑𝐴𝐵) → 𝐵𝑊)
3 simpr 479 . . . 4 ((𝜑𝐴𝐵) → 𝐴𝐵)
4 mapss 8173 . . . 4 ((𝐵𝑊𝐴𝐵) → (𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶))
52, 3, 4syl2anc 579 . . 3 ((𝜑𝐴𝐵) → (𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶))
65ex 403 . 2 (𝜑 → (𝐴𝐵 → (𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶)))
7 mapss2.n . . . . . 6 (𝜑𝐶 ≠ ∅)
8 n0 4162 . . . . . 6 (𝐶 ≠ ∅ ↔ ∃𝑥 𝑥𝐶)
97, 8sylib 210 . . . . 5 (𝜑 → ∃𝑥 𝑥𝐶)
109adantr 474 . . . 4 ((𝜑 ∧ (𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶)) → ∃𝑥 𝑥𝐶)
11 eqidd 2826 . . . . . . . . . . . 12 ((𝜑𝑥𝐶) → (𝑤𝐶𝑦) = (𝑤𝐶𝑦))
12 eqidd 2826 . . . . . . . . . . . 12 (((𝜑𝑥𝐶) ∧ 𝑤 = 𝑥) → 𝑦 = 𝑦)
13 simpr 479 . . . . . . . . . . . 12 ((𝜑𝑥𝐶) → 𝑥𝐶)
14 vex 3417 . . . . . . . . . . . . 13 𝑦 ∈ V
1514a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥𝐶) → 𝑦 ∈ V)
1611, 12, 13, 15fvmptd 6539 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → ((𝑤𝐶𝑦)‘𝑥) = 𝑦)
1716eqcomd 2831 . . . . . . . . . 10 ((𝜑𝑥𝐶) → 𝑦 = ((𝑤𝐶𝑦)‘𝑥))
1817ad4ant13 757 . . . . . . . . 9 ((((𝜑 ∧ (𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶)) ∧ 𝑥𝐶) ∧ 𝑦𝐴) → 𝑦 = ((𝑤𝐶𝑦)‘𝑥))
19 simplr 785 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶)) ∧ 𝑦𝐴) → (𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶))
20 simplr 785 . . . . . . . . . . . . . . . 16 (((𝜑𝑦𝐴) ∧ 𝑤𝐶) → 𝑦𝐴)
2120fmpttd 6639 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐴) → (𝑤𝐶𝑦):𝐶𝐴)
22 mapss2.a . . . . . . . . . . . . . . . . 17 (𝜑𝐴𝑉)
2322adantr 474 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐴) → 𝐴𝑉)
24 mapss2.c . . . . . . . . . . . . . . . . 17 (𝜑𝐶𝑍)
2524adantr 474 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐴) → 𝐶𝑍)
2623, 25elmapd 8141 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐴) → ((𝑤𝐶𝑦) ∈ (𝐴𝑚 𝐶) ↔ (𝑤𝐶𝑦):𝐶𝐴))
2721, 26mpbird 249 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐴) → (𝑤𝐶𝑦) ∈ (𝐴𝑚 𝐶))
2827adantlr 706 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶)) ∧ 𝑦𝐴) → (𝑤𝐶𝑦) ∈ (𝐴𝑚 𝐶))
2919, 28sseldd 3828 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶)) ∧ 𝑦𝐴) → (𝑤𝐶𝑦) ∈ (𝐵𝑚 𝐶))
30 elmapi 8149 . . . . . . . . . . . 12 ((𝑤𝐶𝑦) ∈ (𝐵𝑚 𝐶) → (𝑤𝐶𝑦):𝐶𝐵)
3129, 30syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶)) ∧ 𝑦𝐴) → (𝑤𝐶𝑦):𝐶𝐵)
3231adantlr 706 . . . . . . . . . 10 ((((𝜑 ∧ (𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶)) ∧ 𝑥𝐶) ∧ 𝑦𝐴) → (𝑤𝐶𝑦):𝐶𝐵)
33 simplr 785 . . . . . . . . . 10 ((((𝜑 ∧ (𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶)) ∧ 𝑥𝐶) ∧ 𝑦𝐴) → 𝑥𝐶)
3432, 33ffvelrnd 6614 . . . . . . . . 9 ((((𝜑 ∧ (𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶)) ∧ 𝑥𝐶) ∧ 𝑦𝐴) → ((𝑤𝐶𝑦)‘𝑥) ∈ 𝐵)
3518, 34eqeltrd 2906 . . . . . . . 8 ((((𝜑 ∧ (𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶)) ∧ 𝑥𝐶) ∧ 𝑦𝐴) → 𝑦𝐵)
3635ralrimiva 3175 . . . . . . 7 (((𝜑 ∧ (𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶)) ∧ 𝑥𝐶) → ∀𝑦𝐴 𝑦𝐵)
37 dfss3 3816 . . . . . . 7 (𝐴𝐵 ↔ ∀𝑦𝐴 𝑦𝐵)
3836, 37sylibr 226 . . . . . 6 (((𝜑 ∧ (𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶)) ∧ 𝑥𝐶) → 𝐴𝐵)
3938ex 403 . . . . 5 ((𝜑 ∧ (𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶)) → (𝑥𝐶𝐴𝐵))
4039exlimdv 2032 . . . 4 ((𝜑 ∧ (𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶)) → (∃𝑥 𝑥𝐶𝐴𝐵))
4110, 40mpd 15 . . 3 ((𝜑 ∧ (𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶)) → 𝐴𝐵)
4241ex 403 . 2 (𝜑 → ((𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶) → 𝐴𝐵))
436, 42impbid 204 1 (𝜑 → (𝐴𝐵 ↔ (𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1656  wex 1878  wcel 2164  wne 2999  wral 3117  Vcvv 3414  wss 3798  c0 4146  cmpt 4954  wf 6123  cfv 6127  (class class class)co 6910  𝑚 cmap 8127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-fv 6135  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-1st 7433  df-2nd 7434  df-map 8129
This theorem is referenced by:  ovnovollem1  41662  ovnovollem2  41663
  Copyright terms: Public domain W3C validator