Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapss2 Structured version   Visualization version   GIF version

Theorem mapss2 45112
Description: Subset inheritance for set exponentiation. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
mapss2.a (𝜑𝐴𝑉)
mapss2.b (𝜑𝐵𝑊)
mapss2.c (𝜑𝐶𝑍)
mapss2.n (𝜑𝐶 ≠ ∅)
Assertion
Ref Expression
mapss2 (𝜑 → (𝐴𝐵 ↔ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)))

Proof of Theorem mapss2
Dummy variables 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapss2.b . . . . 5 (𝜑𝐵𝑊)
21adantr 480 . . . 4 ((𝜑𝐴𝐵) → 𝐵𝑊)
3 simpr 484 . . . 4 ((𝜑𝐴𝐵) → 𝐴𝐵)
4 mapss 8947 . . . 4 ((𝐵𝑊𝐴𝐵) → (𝐴m 𝐶) ⊆ (𝐵m 𝐶))
52, 3, 4syl2anc 583 . . 3 ((𝜑𝐴𝐵) → (𝐴m 𝐶) ⊆ (𝐵m 𝐶))
65ex 412 . 2 (𝜑 → (𝐴𝐵 → (𝐴m 𝐶) ⊆ (𝐵m 𝐶)))
7 mapss2.n . . . . . 6 (𝜑𝐶 ≠ ∅)
8 n0 4376 . . . . . 6 (𝐶 ≠ ∅ ↔ ∃𝑥 𝑥𝐶)
97, 8sylib 218 . . . . 5 (𝜑 → ∃𝑥 𝑥𝐶)
109adantr 480 . . . 4 ((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) → ∃𝑥 𝑥𝐶)
11 eqidd 2741 . . . . . . . . . . . 12 ((𝜑𝑥𝐶) → (𝑤𝐶𝑦) = (𝑤𝐶𝑦))
12 eqidd 2741 . . . . . . . . . . . 12 (((𝜑𝑥𝐶) ∧ 𝑤 = 𝑥) → 𝑦 = 𝑦)
13 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑥𝐶) → 𝑥𝐶)
14 vex 3492 . . . . . . . . . . . . 13 𝑦 ∈ V
1514a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥𝐶) → 𝑦 ∈ V)
1611, 12, 13, 15fvmptd 7036 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → ((𝑤𝐶𝑦)‘𝑥) = 𝑦)
1716eqcomd 2746 . . . . . . . . . 10 ((𝜑𝑥𝐶) → 𝑦 = ((𝑤𝐶𝑦)‘𝑥))
1817ad4ant13 750 . . . . . . . . 9 ((((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑥𝐶) ∧ 𝑦𝐴) → 𝑦 = ((𝑤𝐶𝑦)‘𝑥))
19 simplr 768 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑦𝐴) → (𝐴m 𝐶) ⊆ (𝐵m 𝐶))
20 simplr 768 . . . . . . . . . . . . . . . 16 (((𝜑𝑦𝐴) ∧ 𝑤𝐶) → 𝑦𝐴)
2120fmpttd 7149 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐴) → (𝑤𝐶𝑦):𝐶𝐴)
22 mapss2.a . . . . . . . . . . . . . . . . 17 (𝜑𝐴𝑉)
2322adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐴) → 𝐴𝑉)
24 mapss2.c . . . . . . . . . . . . . . . . 17 (𝜑𝐶𝑍)
2524adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐴) → 𝐶𝑍)
2623, 25elmapd 8898 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐴) → ((𝑤𝐶𝑦) ∈ (𝐴m 𝐶) ↔ (𝑤𝐶𝑦):𝐶𝐴))
2721, 26mpbird 257 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐴) → (𝑤𝐶𝑦) ∈ (𝐴m 𝐶))
2827adantlr 714 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑦𝐴) → (𝑤𝐶𝑦) ∈ (𝐴m 𝐶))
2919, 28sseldd 4009 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑦𝐴) → (𝑤𝐶𝑦) ∈ (𝐵m 𝐶))
30 elmapi 8907 . . . . . . . . . . . 12 ((𝑤𝐶𝑦) ∈ (𝐵m 𝐶) → (𝑤𝐶𝑦):𝐶𝐵)
3129, 30syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑦𝐴) → (𝑤𝐶𝑦):𝐶𝐵)
3231adantlr 714 . . . . . . . . . 10 ((((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑥𝐶) ∧ 𝑦𝐴) → (𝑤𝐶𝑦):𝐶𝐵)
33 simplr 768 . . . . . . . . . 10 ((((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑥𝐶) ∧ 𝑦𝐴) → 𝑥𝐶)
3432, 33ffvelcdmd 7119 . . . . . . . . 9 ((((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑥𝐶) ∧ 𝑦𝐴) → ((𝑤𝐶𝑦)‘𝑥) ∈ 𝐵)
3518, 34eqeltrd 2844 . . . . . . . 8 ((((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑥𝐶) ∧ 𝑦𝐴) → 𝑦𝐵)
3635ralrimiva 3152 . . . . . . 7 (((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑥𝐶) → ∀𝑦𝐴 𝑦𝐵)
37 dfss3 3997 . . . . . . 7 (𝐴𝐵 ↔ ∀𝑦𝐴 𝑦𝐵)
3836, 37sylibr 234 . . . . . 6 (((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑥𝐶) → 𝐴𝐵)
3938ex 412 . . . . 5 ((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) → (𝑥𝐶𝐴𝐵))
4039exlimdv 1932 . . . 4 ((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) → (∃𝑥 𝑥𝐶𝐴𝐵))
4110, 40mpd 15 . . 3 ((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) → 𝐴𝐵)
4241ex 412 . 2 (𝜑 → ((𝐴m 𝐶) ⊆ (𝐵m 𝐶) → 𝐴𝐵))
436, 42impbid 212 1 (𝜑 → (𝐴𝐵 ↔ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wne 2946  wral 3067  Vcvv 3488  wss 3976  c0 4352  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886
This theorem is referenced by:  ovnovollem1  46577  ovnovollem2  46578
  Copyright terms: Public domain W3C validator