Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapss2 Structured version   Visualization version   GIF version

Theorem mapss2 42634
Description: Subset inheritance for set exponentiation. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
mapss2.a (𝜑𝐴𝑉)
mapss2.b (𝜑𝐵𝑊)
mapss2.c (𝜑𝐶𝑍)
mapss2.n (𝜑𝐶 ≠ ∅)
Assertion
Ref Expression
mapss2 (𝜑 → (𝐴𝐵 ↔ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)))

Proof of Theorem mapss2
Dummy variables 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapss2.b . . . . 5 (𝜑𝐵𝑊)
21adantr 480 . . . 4 ((𝜑𝐴𝐵) → 𝐵𝑊)
3 simpr 484 . . . 4 ((𝜑𝐴𝐵) → 𝐴𝐵)
4 mapss 8635 . . . 4 ((𝐵𝑊𝐴𝐵) → (𝐴m 𝐶) ⊆ (𝐵m 𝐶))
52, 3, 4syl2anc 583 . . 3 ((𝜑𝐴𝐵) → (𝐴m 𝐶) ⊆ (𝐵m 𝐶))
65ex 412 . 2 (𝜑 → (𝐴𝐵 → (𝐴m 𝐶) ⊆ (𝐵m 𝐶)))
7 mapss2.n . . . . . 6 (𝜑𝐶 ≠ ∅)
8 n0 4277 . . . . . 6 (𝐶 ≠ ∅ ↔ ∃𝑥 𝑥𝐶)
97, 8sylib 217 . . . . 5 (𝜑 → ∃𝑥 𝑥𝐶)
109adantr 480 . . . 4 ((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) → ∃𝑥 𝑥𝐶)
11 eqidd 2739 . . . . . . . . . . . 12 ((𝜑𝑥𝐶) → (𝑤𝐶𝑦) = (𝑤𝐶𝑦))
12 eqidd 2739 . . . . . . . . . . . 12 (((𝜑𝑥𝐶) ∧ 𝑤 = 𝑥) → 𝑦 = 𝑦)
13 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑥𝐶) → 𝑥𝐶)
14 vex 3426 . . . . . . . . . . . . 13 𝑦 ∈ V
1514a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥𝐶) → 𝑦 ∈ V)
1611, 12, 13, 15fvmptd 6864 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → ((𝑤𝐶𝑦)‘𝑥) = 𝑦)
1716eqcomd 2744 . . . . . . . . . 10 ((𝜑𝑥𝐶) → 𝑦 = ((𝑤𝐶𝑦)‘𝑥))
1817ad4ant13 747 . . . . . . . . 9 ((((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑥𝐶) ∧ 𝑦𝐴) → 𝑦 = ((𝑤𝐶𝑦)‘𝑥))
19 simplr 765 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑦𝐴) → (𝐴m 𝐶) ⊆ (𝐵m 𝐶))
20 simplr 765 . . . . . . . . . . . . . . . 16 (((𝜑𝑦𝐴) ∧ 𝑤𝐶) → 𝑦𝐴)
2120fmpttd 6971 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐴) → (𝑤𝐶𝑦):𝐶𝐴)
22 mapss2.a . . . . . . . . . . . . . . . . 17 (𝜑𝐴𝑉)
2322adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐴) → 𝐴𝑉)
24 mapss2.c . . . . . . . . . . . . . . . . 17 (𝜑𝐶𝑍)
2524adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐴) → 𝐶𝑍)
2623, 25elmapd 8587 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐴) → ((𝑤𝐶𝑦) ∈ (𝐴m 𝐶) ↔ (𝑤𝐶𝑦):𝐶𝐴))
2721, 26mpbird 256 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐴) → (𝑤𝐶𝑦) ∈ (𝐴m 𝐶))
2827adantlr 711 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑦𝐴) → (𝑤𝐶𝑦) ∈ (𝐴m 𝐶))
2919, 28sseldd 3918 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑦𝐴) → (𝑤𝐶𝑦) ∈ (𝐵m 𝐶))
30 elmapi 8595 . . . . . . . . . . . 12 ((𝑤𝐶𝑦) ∈ (𝐵m 𝐶) → (𝑤𝐶𝑦):𝐶𝐵)
3129, 30syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑦𝐴) → (𝑤𝐶𝑦):𝐶𝐵)
3231adantlr 711 . . . . . . . . . 10 ((((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑥𝐶) ∧ 𝑦𝐴) → (𝑤𝐶𝑦):𝐶𝐵)
33 simplr 765 . . . . . . . . . 10 ((((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑥𝐶) ∧ 𝑦𝐴) → 𝑥𝐶)
3432, 33ffvelrnd 6944 . . . . . . . . 9 ((((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑥𝐶) ∧ 𝑦𝐴) → ((𝑤𝐶𝑦)‘𝑥) ∈ 𝐵)
3518, 34eqeltrd 2839 . . . . . . . 8 ((((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑥𝐶) ∧ 𝑦𝐴) → 𝑦𝐵)
3635ralrimiva 3107 . . . . . . 7 (((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑥𝐶) → ∀𝑦𝐴 𝑦𝐵)
37 dfss3 3905 . . . . . . 7 (𝐴𝐵 ↔ ∀𝑦𝐴 𝑦𝐵)
3836, 37sylibr 233 . . . . . 6 (((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑥𝐶) → 𝐴𝐵)
3938ex 412 . . . . 5 ((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) → (𝑥𝐶𝐴𝐵))
4039exlimdv 1937 . . . 4 ((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) → (∃𝑥 𝑥𝐶𝐴𝐵))
4110, 40mpd 15 . . 3 ((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) → 𝐴𝐵)
4241ex 412 . 2 (𝜑 → ((𝐴m 𝐶) ⊆ (𝐵m 𝐶) → 𝐴𝐵))
436, 42impbid 211 1 (𝜑 → (𝐴𝐵 ↔ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  wne 2942  wral 3063  Vcvv 3422  wss 3883  c0 4253  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-map 8575
This theorem is referenced by:  ovnovollem1  44084  ovnovollem2  44085
  Copyright terms: Public domain W3C validator