Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapss2 Structured version   Visualization version   GIF version

Theorem mapss2 41461
Description: Subset inheritance for set exponentiation. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
mapss2.a (𝜑𝐴𝑉)
mapss2.b (𝜑𝐵𝑊)
mapss2.c (𝜑𝐶𝑍)
mapss2.n (𝜑𝐶 ≠ ∅)
Assertion
Ref Expression
mapss2 (𝜑 → (𝐴𝐵 ↔ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)))

Proof of Theorem mapss2
Dummy variables 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapss2.b . . . . 5 (𝜑𝐵𝑊)
21adantr 483 . . . 4 ((𝜑𝐴𝐵) → 𝐵𝑊)
3 simpr 487 . . . 4 ((𝜑𝐴𝐵) → 𝐴𝐵)
4 mapss 8447 . . . 4 ((𝐵𝑊𝐴𝐵) → (𝐴m 𝐶) ⊆ (𝐵m 𝐶))
52, 3, 4syl2anc 586 . . 3 ((𝜑𝐴𝐵) → (𝐴m 𝐶) ⊆ (𝐵m 𝐶))
65ex 415 . 2 (𝜑 → (𝐴𝐵 → (𝐴m 𝐶) ⊆ (𝐵m 𝐶)))
7 mapss2.n . . . . . 6 (𝜑𝐶 ≠ ∅)
8 n0 4309 . . . . . 6 (𝐶 ≠ ∅ ↔ ∃𝑥 𝑥𝐶)
97, 8sylib 220 . . . . 5 (𝜑 → ∃𝑥 𝑥𝐶)
109adantr 483 . . . 4 ((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) → ∃𝑥 𝑥𝐶)
11 eqidd 2822 . . . . . . . . . . . 12 ((𝜑𝑥𝐶) → (𝑤𝐶𝑦) = (𝑤𝐶𝑦))
12 eqidd 2822 . . . . . . . . . . . 12 (((𝜑𝑥𝐶) ∧ 𝑤 = 𝑥) → 𝑦 = 𝑦)
13 simpr 487 . . . . . . . . . . . 12 ((𝜑𝑥𝐶) → 𝑥𝐶)
14 vex 3497 . . . . . . . . . . . . 13 𝑦 ∈ V
1514a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥𝐶) → 𝑦 ∈ V)
1611, 12, 13, 15fvmptd 6769 . . . . . . . . . . 11 ((𝜑𝑥𝐶) → ((𝑤𝐶𝑦)‘𝑥) = 𝑦)
1716eqcomd 2827 . . . . . . . . . 10 ((𝜑𝑥𝐶) → 𝑦 = ((𝑤𝐶𝑦)‘𝑥))
1817ad4ant13 749 . . . . . . . . 9 ((((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑥𝐶) ∧ 𝑦𝐴) → 𝑦 = ((𝑤𝐶𝑦)‘𝑥))
19 simplr 767 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑦𝐴) → (𝐴m 𝐶) ⊆ (𝐵m 𝐶))
20 simplr 767 . . . . . . . . . . . . . . . 16 (((𝜑𝑦𝐴) ∧ 𝑤𝐶) → 𝑦𝐴)
2120fmpttd 6873 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐴) → (𝑤𝐶𝑦):𝐶𝐴)
22 mapss2.a . . . . . . . . . . . . . . . . 17 (𝜑𝐴𝑉)
2322adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐴) → 𝐴𝑉)
24 mapss2.c . . . . . . . . . . . . . . . . 17 (𝜑𝐶𝑍)
2524adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐴) → 𝐶𝑍)
2623, 25elmapd 8414 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐴) → ((𝑤𝐶𝑦) ∈ (𝐴m 𝐶) ↔ (𝑤𝐶𝑦):𝐶𝐴))
2721, 26mpbird 259 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐴) → (𝑤𝐶𝑦) ∈ (𝐴m 𝐶))
2827adantlr 713 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑦𝐴) → (𝑤𝐶𝑦) ∈ (𝐴m 𝐶))
2919, 28sseldd 3967 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑦𝐴) → (𝑤𝐶𝑦) ∈ (𝐵m 𝐶))
30 elmapi 8422 . . . . . . . . . . . 12 ((𝑤𝐶𝑦) ∈ (𝐵m 𝐶) → (𝑤𝐶𝑦):𝐶𝐵)
3129, 30syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑦𝐴) → (𝑤𝐶𝑦):𝐶𝐵)
3231adantlr 713 . . . . . . . . . 10 ((((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑥𝐶) ∧ 𝑦𝐴) → (𝑤𝐶𝑦):𝐶𝐵)
33 simplr 767 . . . . . . . . . 10 ((((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑥𝐶) ∧ 𝑦𝐴) → 𝑥𝐶)
3432, 33ffvelrnd 6846 . . . . . . . . 9 ((((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑥𝐶) ∧ 𝑦𝐴) → ((𝑤𝐶𝑦)‘𝑥) ∈ 𝐵)
3518, 34eqeltrd 2913 . . . . . . . 8 ((((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑥𝐶) ∧ 𝑦𝐴) → 𝑦𝐵)
3635ralrimiva 3182 . . . . . . 7 (((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑥𝐶) → ∀𝑦𝐴 𝑦𝐵)
37 dfss3 3955 . . . . . . 7 (𝐴𝐵 ↔ ∀𝑦𝐴 𝑦𝐵)
3836, 37sylibr 236 . . . . . 6 (((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ 𝑥𝐶) → 𝐴𝐵)
3938ex 415 . . . . 5 ((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) → (𝑥𝐶𝐴𝐵))
4039exlimdv 1930 . . . 4 ((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) → (∃𝑥 𝑥𝐶𝐴𝐵))
4110, 40mpd 15 . . 3 ((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) → 𝐴𝐵)
4241ex 415 . 2 (𝜑 → ((𝐴m 𝐶) ⊆ (𝐵m 𝐶) → 𝐴𝐵))
436, 42impbid 214 1 (𝜑 → (𝐴𝐵 ↔ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wex 1776  wcel 2110  wne 3016  wral 3138  Vcvv 3494  wss 3935  c0 4290  cmpt 5138  wf 6345  cfv 6349  (class class class)co 7150  m cmap 8400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-map 8402
This theorem is referenced by:  ovnovollem1  42932  ovnovollem2  42933
  Copyright terms: Public domain W3C validator