Step | Hyp | Ref
| Expression |
1 | | mapss2.b |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
2 | 1 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ⊆ 𝐵) → 𝐵 ∈ 𝑊) |
3 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ 𝐵) |
4 | | mapss 8635 |
. . . 4
⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) |
5 | 2, 3, 4 | syl2anc 583 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) |
6 | 5 | ex 412 |
. 2
⊢ (𝜑 → (𝐴 ⊆ 𝐵 → (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶))) |
7 | | mapss2.n |
. . . . . 6
⊢ (𝜑 → 𝐶 ≠ ∅) |
8 | | n0 4277 |
. . . . . 6
⊢ (𝐶 ≠ ∅ ↔
∃𝑥 𝑥 ∈ 𝐶) |
9 | 7, 8 | sylib 217 |
. . . . 5
⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐶) |
10 | 9 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) → ∃𝑥 𝑥 ∈ 𝐶) |
11 | | eqidd 2739 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑤 ∈ 𝐶 ↦ 𝑦) = (𝑤 ∈ 𝐶 ↦ 𝑦)) |
12 | | eqidd 2739 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑤 = 𝑥) → 𝑦 = 𝑦) |
13 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ 𝐶) |
14 | | vex 3426 |
. . . . . . . . . . . . 13
⊢ 𝑦 ∈ V |
15 | 14 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑦 ∈ V) |
16 | 11, 12, 13, 15 | fvmptd 6864 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝑤 ∈ 𝐶 ↦ 𝑦)‘𝑥) = 𝑦) |
17 | 16 | eqcomd 2744 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑦 = ((𝑤 ∈ 𝐶 ↦ 𝑦)‘𝑥)) |
18 | 17 | ad4ant13 747 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐴) → 𝑦 = ((𝑤 ∈ 𝐶 ↦ 𝑦)‘𝑥)) |
19 | | simplr 765 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) ∧ 𝑦 ∈ 𝐴) → (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) |
20 | | simplr 765 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑤 ∈ 𝐶) → 𝑦 ∈ 𝐴) |
21 | 20 | fmpttd 6971 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝑤 ∈ 𝐶 ↦ 𝑦):𝐶⟶𝐴) |
22 | | mapss2.a |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
23 | 22 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝐴 ∈ 𝑉) |
24 | | mapss2.c |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐶 ∈ 𝑍) |
25 | 24 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝐶 ∈ 𝑍) |
26 | 23, 25 | elmapd 8587 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑤 ∈ 𝐶 ↦ 𝑦) ∈ (𝐴 ↑m 𝐶) ↔ (𝑤 ∈ 𝐶 ↦ 𝑦):𝐶⟶𝐴)) |
27 | 21, 26 | mpbird 256 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝑤 ∈ 𝐶 ↦ 𝑦) ∈ (𝐴 ↑m 𝐶)) |
28 | 27 | adantlr 711 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) ∧ 𝑦 ∈ 𝐴) → (𝑤 ∈ 𝐶 ↦ 𝑦) ∈ (𝐴 ↑m 𝐶)) |
29 | 19, 28 | sseldd 3918 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) ∧ 𝑦 ∈ 𝐴) → (𝑤 ∈ 𝐶 ↦ 𝑦) ∈ (𝐵 ↑m 𝐶)) |
30 | | elmapi 8595 |
. . . . . . . . . . . 12
⊢ ((𝑤 ∈ 𝐶 ↦ 𝑦) ∈ (𝐵 ↑m 𝐶) → (𝑤 ∈ 𝐶 ↦ 𝑦):𝐶⟶𝐵) |
31 | 29, 30 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) ∧ 𝑦 ∈ 𝐴) → (𝑤 ∈ 𝐶 ↦ 𝑦):𝐶⟶𝐵) |
32 | 31 | adantlr 711 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐴) → (𝑤 ∈ 𝐶 ↦ 𝑦):𝐶⟶𝐵) |
33 | | simplr 765 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐶) |
34 | 32, 33 | ffvelrnd 6944 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐴) → ((𝑤 ∈ 𝐶 ↦ 𝑦)‘𝑥) ∈ 𝐵) |
35 | 18, 34 | eqeltrd 2839 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐵) |
36 | 35 | ralrimiva 3107 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) ∧ 𝑥 ∈ 𝐶) → ∀𝑦 ∈ 𝐴 𝑦 ∈ 𝐵) |
37 | | dfss3 3905 |
. . . . . . 7
⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑦 ∈ 𝐴 𝑦 ∈ 𝐵) |
38 | 36, 37 | sylibr 233 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) ∧ 𝑥 ∈ 𝐶) → 𝐴 ⊆ 𝐵) |
39 | 38 | ex 412 |
. . . . 5
⊢ ((𝜑 ∧ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) → (𝑥 ∈ 𝐶 → 𝐴 ⊆ 𝐵)) |
40 | 39 | exlimdv 1937 |
. . . 4
⊢ ((𝜑 ∧ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) → (∃𝑥 𝑥 ∈ 𝐶 → 𝐴 ⊆ 𝐵)) |
41 | 10, 40 | mpd 15 |
. . 3
⊢ ((𝜑 ∧ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) → 𝐴 ⊆ 𝐵) |
42 | 41 | ex 412 |
. 2
⊢ (𝜑 → ((𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶) → 𝐴 ⊆ 𝐵)) |
43 | 6, 42 | impbid 211 |
1
⊢ (𝜑 → (𝐴 ⊆ 𝐵 ↔ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶))) |