Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rfcnpre4 Structured version   Visualization version   GIF version

Theorem rfcnpre4 41281
Description: If F is a continuous function with respect to the standard topology, then the preimage A of the values less than or equal to a given real B is a closed set. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
rfcnpre4.1 𝑡𝐹
rfcnpre4.2 𝐾 = (topGen‘ran (,))
rfcnpre4.3 𝑇 = 𝐽
rfcnpre4.4 𝐴 = {𝑡𝑇 ∣ (𝐹𝑡) ≤ 𝐵}
rfcnpre4.5 (𝜑𝐵 ∈ ℝ)
rfcnpre4.6 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
rfcnpre4 (𝜑𝐴 ∈ (Clsd‘𝐽))
Distinct variable groups:   𝑡,𝐵   𝑡,𝑇
Allowed substitution hints:   𝜑(𝑡)   𝐴(𝑡)   𝐹(𝑡)   𝐽(𝑡)   𝐾(𝑡)

Proof of Theorem rfcnpre4
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 rfcnpre4.2 . . . . . . . 8 𝐾 = (topGen‘ran (,))
2 rfcnpre4.3 . . . . . . . 8 𝑇 = 𝐽
3 eqid 2819 . . . . . . . 8 (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾)
4 rfcnpre4.6 . . . . . . . 8 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
51, 2, 3, 4fcnre 41272 . . . . . . 7 (𝜑𝐹:𝑇⟶ℝ)
6 ffn 6507 . . . . . . 7 (𝐹:𝑇⟶ℝ → 𝐹 Fn 𝑇)
7 elpreima 6821 . . . . . . 7 (𝐹 Fn 𝑇 → (𝑠 ∈ (𝐹 “ (-∞(,]𝐵)) ↔ (𝑠𝑇 ∧ (𝐹𝑠) ∈ (-∞(,]𝐵))))
85, 6, 73syl 18 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐹 “ (-∞(,]𝐵)) ↔ (𝑠𝑇 ∧ (𝐹𝑠) ∈ (-∞(,]𝐵))))
9 mnfxr 10690 . . . . . . . . 9 -∞ ∈ ℝ*
10 rfcnpre4.5 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
1110rexrd 10683 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ*)
1211adantr 483 . . . . . . . . 9 ((𝜑𝑠𝑇) → 𝐵 ∈ ℝ*)
13 elioc1 12772 . . . . . . . . 9 ((-∞ ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐹𝑠) ∈ (-∞(,]𝐵) ↔ ((𝐹𝑠) ∈ ℝ* ∧ -∞ < (𝐹𝑠) ∧ (𝐹𝑠) ≤ 𝐵)))
149, 12, 13sylancr 589 . . . . . . . 8 ((𝜑𝑠𝑇) → ((𝐹𝑠) ∈ (-∞(,]𝐵) ↔ ((𝐹𝑠) ∈ ℝ* ∧ -∞ < (𝐹𝑠) ∧ (𝐹𝑠) ≤ 𝐵)))
15 simpr3 1191 . . . . . . . . 9 (((𝜑𝑠𝑇) ∧ ((𝐹𝑠) ∈ ℝ* ∧ -∞ < (𝐹𝑠) ∧ (𝐹𝑠) ≤ 𝐵)) → (𝐹𝑠) ≤ 𝐵)
165ffvelrnda 6844 . . . . . . . . . . . 12 ((𝜑𝑠𝑇) → (𝐹𝑠) ∈ ℝ)
1716rexrd 10683 . . . . . . . . . . 11 ((𝜑𝑠𝑇) → (𝐹𝑠) ∈ ℝ*)
1817adantr 483 . . . . . . . . . 10 (((𝜑𝑠𝑇) ∧ (𝐹𝑠) ≤ 𝐵) → (𝐹𝑠) ∈ ℝ*)
1916adantr 483 . . . . . . . . . . 11 (((𝜑𝑠𝑇) ∧ (𝐹𝑠) ≤ 𝐵) → (𝐹𝑠) ∈ ℝ)
20 mnflt 12510 . . . . . . . . . . 11 ((𝐹𝑠) ∈ ℝ → -∞ < (𝐹𝑠))
2119, 20syl 17 . . . . . . . . . 10 (((𝜑𝑠𝑇) ∧ (𝐹𝑠) ≤ 𝐵) → -∞ < (𝐹𝑠))
22 simpr 487 . . . . . . . . . 10 (((𝜑𝑠𝑇) ∧ (𝐹𝑠) ≤ 𝐵) → (𝐹𝑠) ≤ 𝐵)
2318, 21, 223jca 1123 . . . . . . . . 9 (((𝜑𝑠𝑇) ∧ (𝐹𝑠) ≤ 𝐵) → ((𝐹𝑠) ∈ ℝ* ∧ -∞ < (𝐹𝑠) ∧ (𝐹𝑠) ≤ 𝐵))
2415, 23impbida 799 . . . . . . . 8 ((𝜑𝑠𝑇) → (((𝐹𝑠) ∈ ℝ* ∧ -∞ < (𝐹𝑠) ∧ (𝐹𝑠) ≤ 𝐵) ↔ (𝐹𝑠) ≤ 𝐵))
2514, 24bitrd 281 . . . . . . 7 ((𝜑𝑠𝑇) → ((𝐹𝑠) ∈ (-∞(,]𝐵) ↔ (𝐹𝑠) ≤ 𝐵))
2625pm5.32da 581 . . . . . 6 (𝜑 → ((𝑠𝑇 ∧ (𝐹𝑠) ∈ (-∞(,]𝐵)) ↔ (𝑠𝑇 ∧ (𝐹𝑠) ≤ 𝐵)))
278, 26bitrd 281 . . . . 5 (𝜑 → (𝑠 ∈ (𝐹 “ (-∞(,]𝐵)) ↔ (𝑠𝑇 ∧ (𝐹𝑠) ≤ 𝐵)))
28 nfcv 2975 . . . . . 6 𝑡𝑠
29 nfcv 2975 . . . . . 6 𝑡𝑇
30 rfcnpre4.1 . . . . . . . 8 𝑡𝐹
3130, 28nffv 6673 . . . . . . 7 𝑡(𝐹𝑠)
32 nfcv 2975 . . . . . . 7 𝑡
33 nfcv 2975 . . . . . . 7 𝑡𝐵
3431, 32, 33nfbr 5104 . . . . . 6 𝑡(𝐹𝑠) ≤ 𝐵
35 fveq2 6663 . . . . . . 7 (𝑡 = 𝑠 → (𝐹𝑡) = (𝐹𝑠))
3635breq1d 5067 . . . . . 6 (𝑡 = 𝑠 → ((𝐹𝑡) ≤ 𝐵 ↔ (𝐹𝑠) ≤ 𝐵))
3728, 29, 34, 36elrabf 3674 . . . . 5 (𝑠 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ 𝐵} ↔ (𝑠𝑇 ∧ (𝐹𝑠) ≤ 𝐵))
3827, 37syl6bbr 291 . . . 4 (𝜑 → (𝑠 ∈ (𝐹 “ (-∞(,]𝐵)) ↔ 𝑠 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ 𝐵}))
3938eqrdv 2817 . . 3 (𝜑 → (𝐹 “ (-∞(,]𝐵)) = {𝑡𝑇 ∣ (𝐹𝑡) ≤ 𝐵})
40 rfcnpre4.4 . . 3 𝐴 = {𝑡𝑇 ∣ (𝐹𝑡) ≤ 𝐵}
4139, 40syl6eqr 2872 . 2 (𝜑 → (𝐹 “ (-∞(,]𝐵)) = 𝐴)
42 iocmnfcld 23369 . . . . 5 (𝐵 ∈ ℝ → (-∞(,]𝐵) ∈ (Clsd‘(topGen‘ran (,))))
4310, 42syl 17 . . . 4 (𝜑 → (-∞(,]𝐵) ∈ (Clsd‘(topGen‘ran (,))))
441fveq2i 6666 . . . 4 (Clsd‘𝐾) = (Clsd‘(topGen‘ran (,)))
4543, 44eleqtrrdi 2922 . . 3 (𝜑 → (-∞(,]𝐵) ∈ (Clsd‘𝐾))
46 cnclima 21868 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (-∞(,]𝐵) ∈ (Clsd‘𝐾)) → (𝐹 “ (-∞(,]𝐵)) ∈ (Clsd‘𝐽))
474, 45, 46syl2anc 586 . 2 (𝜑 → (𝐹 “ (-∞(,]𝐵)) ∈ (Clsd‘𝐽))
4841, 47eqeltrrd 2912 1 (𝜑𝐴 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082   = wceq 1531  wcel 2108  wnfc 2959  {crab 3140   cuni 4830   class class class wbr 5057  ccnv 5547  ran crn 5549  cima 5551   Fn wfn 6343  wf 6344  cfv 6348  (class class class)co 7148  cr 10528  -∞cmnf 10665  *cxr 10666   < clt 10667  cle 10668  (,)cioo 12730  (,]cioc 12731  topGenctg 16703  Clsdccld 21616   Cn ccn 21824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-inf 8899  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-ioo 12734  df-ioc 12735  df-topgen 16709  df-top 21494  df-topon 21511  df-bases 21546  df-cld 21619  df-cn 21827
This theorem is referenced by:  stoweidlem59  42334
  Copyright terms: Public domain W3C validator