| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | rfcnpre4.2 | . . . . . . . 8
⊢ 𝐾 = (topGen‘ran
(,)) | 
| 2 |  | rfcnpre4.3 | . . . . . . . 8
⊢ 𝑇 = ∪
𝐽 | 
| 3 |  | eqid 2736 | . . . . . . . 8
⊢ (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾) | 
| 4 |  | rfcnpre4.6 | . . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | 
| 5 | 1, 2, 3, 4 | fcnre 45035 | . . . . . . 7
⊢ (𝜑 → 𝐹:𝑇⟶ℝ) | 
| 6 |  | ffn 6735 | . . . . . . 7
⊢ (𝐹:𝑇⟶ℝ → 𝐹 Fn 𝑇) | 
| 7 |  | elpreima 7077 | . . . . . . 7
⊢ (𝐹 Fn 𝑇 → (𝑠 ∈ (◡𝐹 “ (-∞(,]𝐵)) ↔ (𝑠 ∈ 𝑇 ∧ (𝐹‘𝑠) ∈ (-∞(,]𝐵)))) | 
| 8 | 5, 6, 7 | 3syl 18 | . . . . . 6
⊢ (𝜑 → (𝑠 ∈ (◡𝐹 “ (-∞(,]𝐵)) ↔ (𝑠 ∈ 𝑇 ∧ (𝐹‘𝑠) ∈ (-∞(,]𝐵)))) | 
| 9 |  | mnfxr 11319 | . . . . . . . . 9
⊢ -∞
∈ ℝ* | 
| 10 |  | rfcnpre4.5 | . . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ ℝ) | 
| 11 | 10 | rexrd 11312 | . . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈
ℝ*) | 
| 12 | 11 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑇) → 𝐵 ∈
ℝ*) | 
| 13 |  | elioc1 13430 | . . . . . . . . 9
⊢
((-∞ ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐹‘𝑠) ∈ (-∞(,]𝐵) ↔ ((𝐹‘𝑠) ∈ ℝ* ∧ -∞
< (𝐹‘𝑠) ∧ (𝐹‘𝑠) ≤ 𝐵))) | 
| 14 | 9, 12, 13 | sylancr 587 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑇) → ((𝐹‘𝑠) ∈ (-∞(,]𝐵) ↔ ((𝐹‘𝑠) ∈ ℝ* ∧ -∞
< (𝐹‘𝑠) ∧ (𝐹‘𝑠) ≤ 𝐵))) | 
| 15 |  | simpr3 1196 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ 𝑇) ∧ ((𝐹‘𝑠) ∈ ℝ* ∧ -∞
< (𝐹‘𝑠) ∧ (𝐹‘𝑠) ≤ 𝐵)) → (𝐹‘𝑠) ≤ 𝐵) | 
| 16 | 5 | ffvelcdmda 7103 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑇) → (𝐹‘𝑠) ∈ ℝ) | 
| 17 | 16 | rexrd 11312 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑇) → (𝐹‘𝑠) ∈
ℝ*) | 
| 18 | 17 | adantr 480 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ 𝑇) ∧ (𝐹‘𝑠) ≤ 𝐵) → (𝐹‘𝑠) ∈
ℝ*) | 
| 19 | 16 | adantr 480 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ 𝑇) ∧ (𝐹‘𝑠) ≤ 𝐵) → (𝐹‘𝑠) ∈ ℝ) | 
| 20 |  | mnflt 13166 | . . . . . . . . . . 11
⊢ ((𝐹‘𝑠) ∈ ℝ → -∞ < (𝐹‘𝑠)) | 
| 21 | 19, 20 | syl 17 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ 𝑇) ∧ (𝐹‘𝑠) ≤ 𝐵) → -∞ < (𝐹‘𝑠)) | 
| 22 |  | simpr 484 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ 𝑇) ∧ (𝐹‘𝑠) ≤ 𝐵) → (𝐹‘𝑠) ≤ 𝐵) | 
| 23 | 18, 21, 22 | 3jca 1128 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ 𝑇) ∧ (𝐹‘𝑠) ≤ 𝐵) → ((𝐹‘𝑠) ∈ ℝ* ∧ -∞
< (𝐹‘𝑠) ∧ (𝐹‘𝑠) ≤ 𝐵)) | 
| 24 | 15, 23 | impbida 800 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑇) → (((𝐹‘𝑠) ∈ ℝ* ∧ -∞
< (𝐹‘𝑠) ∧ (𝐹‘𝑠) ≤ 𝐵) ↔ (𝐹‘𝑠) ≤ 𝐵)) | 
| 25 | 14, 24 | bitrd 279 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑇) → ((𝐹‘𝑠) ∈ (-∞(,]𝐵) ↔ (𝐹‘𝑠) ≤ 𝐵)) | 
| 26 | 25 | pm5.32da 579 | . . . . . 6
⊢ (𝜑 → ((𝑠 ∈ 𝑇 ∧ (𝐹‘𝑠) ∈ (-∞(,]𝐵)) ↔ (𝑠 ∈ 𝑇 ∧ (𝐹‘𝑠) ≤ 𝐵))) | 
| 27 | 8, 26 | bitrd 279 | . . . . 5
⊢ (𝜑 → (𝑠 ∈ (◡𝐹 “ (-∞(,]𝐵)) ↔ (𝑠 ∈ 𝑇 ∧ (𝐹‘𝑠) ≤ 𝐵))) | 
| 28 |  | nfcv 2904 | . . . . . 6
⊢
Ⅎ𝑡𝑠 | 
| 29 |  | nfcv 2904 | . . . . . 6
⊢
Ⅎ𝑡𝑇 | 
| 30 |  | rfcnpre4.1 | . . . . . . . 8
⊢
Ⅎ𝑡𝐹 | 
| 31 | 30, 28 | nffv 6915 | . . . . . . 7
⊢
Ⅎ𝑡(𝐹‘𝑠) | 
| 32 |  | nfcv 2904 | . . . . . . 7
⊢
Ⅎ𝑡
≤ | 
| 33 |  | nfcv 2904 | . . . . . . 7
⊢
Ⅎ𝑡𝐵 | 
| 34 | 31, 32, 33 | nfbr 5189 | . . . . . 6
⊢
Ⅎ𝑡(𝐹‘𝑠) ≤ 𝐵 | 
| 35 |  | fveq2 6905 | . . . . . . 7
⊢ (𝑡 = 𝑠 → (𝐹‘𝑡) = (𝐹‘𝑠)) | 
| 36 | 35 | breq1d 5152 | . . . . . 6
⊢ (𝑡 = 𝑠 → ((𝐹‘𝑡) ≤ 𝐵 ↔ (𝐹‘𝑠) ≤ 𝐵)) | 
| 37 | 28, 29, 34, 36 | elrabf 3687 | . . . . 5
⊢ (𝑠 ∈ {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ 𝐵} ↔ (𝑠 ∈ 𝑇 ∧ (𝐹‘𝑠) ≤ 𝐵)) | 
| 38 | 27, 37 | bitr4di 289 | . . . 4
⊢ (𝜑 → (𝑠 ∈ (◡𝐹 “ (-∞(,]𝐵)) ↔ 𝑠 ∈ {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ 𝐵})) | 
| 39 | 38 | eqrdv 2734 | . . 3
⊢ (𝜑 → (◡𝐹 “ (-∞(,]𝐵)) = {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ 𝐵}) | 
| 40 |  | rfcnpre4.4 | . . 3
⊢ 𝐴 = {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ 𝐵} | 
| 41 | 39, 40 | eqtr4di 2794 | . 2
⊢ (𝜑 → (◡𝐹 “ (-∞(,]𝐵)) = 𝐴) | 
| 42 |  | iocmnfcld 24790 | . . . . 5
⊢ (𝐵 ∈ ℝ →
(-∞(,]𝐵) ∈
(Clsd‘(topGen‘ran (,)))) | 
| 43 | 10, 42 | syl 17 | . . . 4
⊢ (𝜑 → (-∞(,]𝐵) ∈
(Clsd‘(topGen‘ran (,)))) | 
| 44 | 1 | fveq2i 6908 | . . . 4
⊢
(Clsd‘𝐾) =
(Clsd‘(topGen‘ran (,))) | 
| 45 | 43, 44 | eleqtrrdi 2851 | . . 3
⊢ (𝜑 → (-∞(,]𝐵) ∈ (Clsd‘𝐾)) | 
| 46 |  | cnclima 23277 | . . 3
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (-∞(,]𝐵) ∈ (Clsd‘𝐾)) → (◡𝐹 “ (-∞(,]𝐵)) ∈ (Clsd‘𝐽)) | 
| 47 | 4, 45, 46 | syl2anc 584 | . 2
⊢ (𝜑 → (◡𝐹 “ (-∞(,]𝐵)) ∈ (Clsd‘𝐽)) | 
| 48 | 41, 47 | eqeltrrd 2841 | 1
⊢ (𝜑 → 𝐴 ∈ (Clsd‘𝐽)) |