Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rfcnpre4 Structured version   Visualization version   GIF version

Theorem rfcnpre4 45155
Description: If F is a continuous function with respect to the standard topology, then the preimage A of the values less than or equal to a given real B is a closed set. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
rfcnpre4.1 𝑡𝐹
rfcnpre4.2 𝐾 = (topGen‘ran (,))
rfcnpre4.3 𝑇 = 𝐽
rfcnpre4.4 𝐴 = {𝑡𝑇 ∣ (𝐹𝑡) ≤ 𝐵}
rfcnpre4.5 (𝜑𝐵 ∈ ℝ)
rfcnpre4.6 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
rfcnpre4 (𝜑𝐴 ∈ (Clsd‘𝐽))
Distinct variable groups:   𝑡,𝐵   𝑡,𝑇
Allowed substitution hints:   𝜑(𝑡)   𝐴(𝑡)   𝐹(𝑡)   𝐽(𝑡)   𝐾(𝑡)

Proof of Theorem rfcnpre4
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 rfcnpre4.2 . . . . . . . 8 𝐾 = (topGen‘ran (,))
2 rfcnpre4.3 . . . . . . . 8 𝑇 = 𝐽
3 eqid 2733 . . . . . . . 8 (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾)
4 rfcnpre4.6 . . . . . . . 8 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
51, 2, 3, 4fcnre 45146 . . . . . . 7 (𝜑𝐹:𝑇⟶ℝ)
6 ffn 6656 . . . . . . 7 (𝐹:𝑇⟶ℝ → 𝐹 Fn 𝑇)
7 elpreima 6997 . . . . . . 7 (𝐹 Fn 𝑇 → (𝑠 ∈ (𝐹 “ (-∞(,]𝐵)) ↔ (𝑠𝑇 ∧ (𝐹𝑠) ∈ (-∞(,]𝐵))))
85, 6, 73syl 18 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐹 “ (-∞(,]𝐵)) ↔ (𝑠𝑇 ∧ (𝐹𝑠) ∈ (-∞(,]𝐵))))
9 mnfxr 11176 . . . . . . . . 9 -∞ ∈ ℝ*
10 rfcnpre4.5 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
1110rexrd 11169 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ*)
1211adantr 480 . . . . . . . . 9 ((𝜑𝑠𝑇) → 𝐵 ∈ ℝ*)
13 elioc1 13289 . . . . . . . . 9 ((-∞ ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐹𝑠) ∈ (-∞(,]𝐵) ↔ ((𝐹𝑠) ∈ ℝ* ∧ -∞ < (𝐹𝑠) ∧ (𝐹𝑠) ≤ 𝐵)))
149, 12, 13sylancr 587 . . . . . . . 8 ((𝜑𝑠𝑇) → ((𝐹𝑠) ∈ (-∞(,]𝐵) ↔ ((𝐹𝑠) ∈ ℝ* ∧ -∞ < (𝐹𝑠) ∧ (𝐹𝑠) ≤ 𝐵)))
15 simpr3 1197 . . . . . . . . 9 (((𝜑𝑠𝑇) ∧ ((𝐹𝑠) ∈ ℝ* ∧ -∞ < (𝐹𝑠) ∧ (𝐹𝑠) ≤ 𝐵)) → (𝐹𝑠) ≤ 𝐵)
165ffvelcdmda 7023 . . . . . . . . . . . 12 ((𝜑𝑠𝑇) → (𝐹𝑠) ∈ ℝ)
1716rexrd 11169 . . . . . . . . . . 11 ((𝜑𝑠𝑇) → (𝐹𝑠) ∈ ℝ*)
1817adantr 480 . . . . . . . . . 10 (((𝜑𝑠𝑇) ∧ (𝐹𝑠) ≤ 𝐵) → (𝐹𝑠) ∈ ℝ*)
1916adantr 480 . . . . . . . . . . 11 (((𝜑𝑠𝑇) ∧ (𝐹𝑠) ≤ 𝐵) → (𝐹𝑠) ∈ ℝ)
20 mnflt 13024 . . . . . . . . . . 11 ((𝐹𝑠) ∈ ℝ → -∞ < (𝐹𝑠))
2119, 20syl 17 . . . . . . . . . 10 (((𝜑𝑠𝑇) ∧ (𝐹𝑠) ≤ 𝐵) → -∞ < (𝐹𝑠))
22 simpr 484 . . . . . . . . . 10 (((𝜑𝑠𝑇) ∧ (𝐹𝑠) ≤ 𝐵) → (𝐹𝑠) ≤ 𝐵)
2318, 21, 223jca 1128 . . . . . . . . 9 (((𝜑𝑠𝑇) ∧ (𝐹𝑠) ≤ 𝐵) → ((𝐹𝑠) ∈ ℝ* ∧ -∞ < (𝐹𝑠) ∧ (𝐹𝑠) ≤ 𝐵))
2415, 23impbida 800 . . . . . . . 8 ((𝜑𝑠𝑇) → (((𝐹𝑠) ∈ ℝ* ∧ -∞ < (𝐹𝑠) ∧ (𝐹𝑠) ≤ 𝐵) ↔ (𝐹𝑠) ≤ 𝐵))
2514, 24bitrd 279 . . . . . . 7 ((𝜑𝑠𝑇) → ((𝐹𝑠) ∈ (-∞(,]𝐵) ↔ (𝐹𝑠) ≤ 𝐵))
2625pm5.32da 579 . . . . . 6 (𝜑 → ((𝑠𝑇 ∧ (𝐹𝑠) ∈ (-∞(,]𝐵)) ↔ (𝑠𝑇 ∧ (𝐹𝑠) ≤ 𝐵)))
278, 26bitrd 279 . . . . 5 (𝜑 → (𝑠 ∈ (𝐹 “ (-∞(,]𝐵)) ↔ (𝑠𝑇 ∧ (𝐹𝑠) ≤ 𝐵)))
28 nfcv 2895 . . . . . 6 𝑡𝑠
29 nfcv 2895 . . . . . 6 𝑡𝑇
30 rfcnpre4.1 . . . . . . . 8 𝑡𝐹
3130, 28nffv 6838 . . . . . . 7 𝑡(𝐹𝑠)
32 nfcv 2895 . . . . . . 7 𝑡
33 nfcv 2895 . . . . . . 7 𝑡𝐵
3431, 32, 33nfbr 5140 . . . . . 6 𝑡(𝐹𝑠) ≤ 𝐵
35 fveq2 6828 . . . . . . 7 (𝑡 = 𝑠 → (𝐹𝑡) = (𝐹𝑠))
3635breq1d 5103 . . . . . 6 (𝑡 = 𝑠 → ((𝐹𝑡) ≤ 𝐵 ↔ (𝐹𝑠) ≤ 𝐵))
3728, 29, 34, 36elrabf 3640 . . . . 5 (𝑠 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ 𝐵} ↔ (𝑠𝑇 ∧ (𝐹𝑠) ≤ 𝐵))
3827, 37bitr4di 289 . . . 4 (𝜑 → (𝑠 ∈ (𝐹 “ (-∞(,]𝐵)) ↔ 𝑠 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ 𝐵}))
3938eqrdv 2731 . . 3 (𝜑 → (𝐹 “ (-∞(,]𝐵)) = {𝑡𝑇 ∣ (𝐹𝑡) ≤ 𝐵})
40 rfcnpre4.4 . . 3 𝐴 = {𝑡𝑇 ∣ (𝐹𝑡) ≤ 𝐵}
4139, 40eqtr4di 2786 . 2 (𝜑 → (𝐹 “ (-∞(,]𝐵)) = 𝐴)
42 iocmnfcld 24684 . . . . 5 (𝐵 ∈ ℝ → (-∞(,]𝐵) ∈ (Clsd‘(topGen‘ran (,))))
4310, 42syl 17 . . . 4 (𝜑 → (-∞(,]𝐵) ∈ (Clsd‘(topGen‘ran (,))))
441fveq2i 6831 . . . 4 (Clsd‘𝐾) = (Clsd‘(topGen‘ran (,)))
4543, 44eleqtrrdi 2844 . . 3 (𝜑 → (-∞(,]𝐵) ∈ (Clsd‘𝐾))
46 cnclima 23184 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (-∞(,]𝐵) ∈ (Clsd‘𝐾)) → (𝐹 “ (-∞(,]𝐵)) ∈ (Clsd‘𝐽))
474, 45, 46syl2anc 584 . 2 (𝜑 → (𝐹 “ (-∞(,]𝐵)) ∈ (Clsd‘𝐽))
4841, 47eqeltrrd 2834 1 (𝜑𝐴 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wnfc 2880  {crab 3396   cuni 4858   class class class wbr 5093  ccnv 5618  ran crn 5620  cima 5622   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7352  cr 11012  -∞cmnf 11151  *cxr 11152   < clt 11153  cle 11154  (,)cioo 13247  (,]cioc 13248  topGenctg 17343  Clsdccld 22932   Cn ccn 23140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-q 12849  df-ioo 13251  df-ioc 13252  df-topgen 17349  df-top 22810  df-topon 22827  df-bases 22862  df-cld 22935  df-cn 23143
This theorem is referenced by:  stoweidlem59  46181
  Copyright terms: Public domain W3C validator