Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rfcnpre3 Structured version   Visualization version   GIF version

Theorem rfcnpre3 39868
Description: If F is a continuous function with respect to the standard topology, then the preimage A of the values greater than or equal to a given real B is a closed set. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
rfcnpre3.2 𝑡𝐹
rfcnpre3.3 𝐾 = (topGen‘ran (,))
rfcnpre3.4 𝑇 = 𝐽
rfcnpre3.5 𝐴 = {𝑡𝑇𝐵 ≤ (𝐹𝑡)}
rfcnpre3.6 (𝜑𝐵 ∈ ℝ)
rfcnpre3.8 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
rfcnpre3 (𝜑𝐴 ∈ (Clsd‘𝐽))
Distinct variable groups:   𝑡,𝐵   𝑡,𝑇
Allowed substitution hints:   𝜑(𝑡)   𝐴(𝑡)   𝐹(𝑡)   𝐽(𝑡)   𝐾(𝑡)

Proof of Theorem rfcnpre3
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 rfcnpre3.3 . . . . . . . 8 𝐾 = (topGen‘ran (,))
2 rfcnpre3.4 . . . . . . . 8 𝑇 = 𝐽
3 eqid 2765 . . . . . . . 8 (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾)
4 rfcnpre3.8 . . . . . . . 8 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
51, 2, 3, 4fcnre 39860 . . . . . . 7 (𝜑𝐹:𝑇⟶ℝ)
6 ffn 6225 . . . . . . 7 (𝐹:𝑇⟶ℝ → 𝐹 Fn 𝑇)
7 elpreima 6531 . . . . . . 7 (𝐹 Fn 𝑇 → (𝑠 ∈ (𝐹 “ (𝐵[,)+∞)) ↔ (𝑠𝑇 ∧ (𝐹𝑠) ∈ (𝐵[,)+∞))))
85, 6, 73syl 18 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐹 “ (𝐵[,)+∞)) ↔ (𝑠𝑇 ∧ (𝐹𝑠) ∈ (𝐵[,)+∞))))
9 rfcnpre3.6 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
109rexrd 10347 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ*)
1110adantr 472 . . . . . . . . 9 ((𝜑𝑠𝑇) → 𝐵 ∈ ℝ*)
12 pnfxr 10350 . . . . . . . . 9 +∞ ∈ ℝ*
13 elico1 12425 . . . . . . . . 9 ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐹𝑠) ∈ (𝐵[,)+∞) ↔ ((𝐹𝑠) ∈ ℝ*𝐵 ≤ (𝐹𝑠) ∧ (𝐹𝑠) < +∞)))
1411, 12, 13sylancl 580 . . . . . . . 8 ((𝜑𝑠𝑇) → ((𝐹𝑠) ∈ (𝐵[,)+∞) ↔ ((𝐹𝑠) ∈ ℝ*𝐵 ≤ (𝐹𝑠) ∧ (𝐹𝑠) < +∞)))
15 simpr2 1250 . . . . . . . . 9 (((𝜑𝑠𝑇) ∧ ((𝐹𝑠) ∈ ℝ*𝐵 ≤ (𝐹𝑠) ∧ (𝐹𝑠) < +∞)) → 𝐵 ≤ (𝐹𝑠))
165ffvelrnda 6553 . . . . . . . . . . . 12 ((𝜑𝑠𝑇) → (𝐹𝑠) ∈ ℝ)
1716rexrd 10347 . . . . . . . . . . 11 ((𝜑𝑠𝑇) → (𝐹𝑠) ∈ ℝ*)
1817adantr 472 . . . . . . . . . 10 (((𝜑𝑠𝑇) ∧ 𝐵 ≤ (𝐹𝑠)) → (𝐹𝑠) ∈ ℝ*)
19 simpr 477 . . . . . . . . . 10 (((𝜑𝑠𝑇) ∧ 𝐵 ≤ (𝐹𝑠)) → 𝐵 ≤ (𝐹𝑠))
2016adantr 472 . . . . . . . . . . 11 (((𝜑𝑠𝑇) ∧ 𝐵 ≤ (𝐹𝑠)) → (𝐹𝑠) ∈ ℝ)
21 ltpnf 12159 . . . . . . . . . . 11 ((𝐹𝑠) ∈ ℝ → (𝐹𝑠) < +∞)
2220, 21syl 17 . . . . . . . . . 10 (((𝜑𝑠𝑇) ∧ 𝐵 ≤ (𝐹𝑠)) → (𝐹𝑠) < +∞)
2318, 19, 223jca 1158 . . . . . . . . 9 (((𝜑𝑠𝑇) ∧ 𝐵 ≤ (𝐹𝑠)) → ((𝐹𝑠) ∈ ℝ*𝐵 ≤ (𝐹𝑠) ∧ (𝐹𝑠) < +∞))
2415, 23impbida 835 . . . . . . . 8 ((𝜑𝑠𝑇) → (((𝐹𝑠) ∈ ℝ*𝐵 ≤ (𝐹𝑠) ∧ (𝐹𝑠) < +∞) ↔ 𝐵 ≤ (𝐹𝑠)))
2514, 24bitrd 270 . . . . . . 7 ((𝜑𝑠𝑇) → ((𝐹𝑠) ∈ (𝐵[,)+∞) ↔ 𝐵 ≤ (𝐹𝑠)))
2625pm5.32da 574 . . . . . 6 (𝜑 → ((𝑠𝑇 ∧ (𝐹𝑠) ∈ (𝐵[,)+∞)) ↔ (𝑠𝑇𝐵 ≤ (𝐹𝑠))))
278, 26bitrd 270 . . . . 5 (𝜑 → (𝑠 ∈ (𝐹 “ (𝐵[,)+∞)) ↔ (𝑠𝑇𝐵 ≤ (𝐹𝑠))))
28 nfcv 2907 . . . . . 6 𝑡𝑠
29 nfcv 2907 . . . . . 6 𝑡𝑇
30 nfcv 2907 . . . . . . 7 𝑡𝐵
31 nfcv 2907 . . . . . . 7 𝑡
32 rfcnpre3.2 . . . . . . . 8 𝑡𝐹
3332, 28nffv 6389 . . . . . . 7 𝑡(𝐹𝑠)
3430, 31, 33nfbr 4858 . . . . . 6 𝑡 𝐵 ≤ (𝐹𝑠)
35 fveq2 6379 . . . . . . 7 (𝑡 = 𝑠 → (𝐹𝑡) = (𝐹𝑠))
3635breq2d 4823 . . . . . 6 (𝑡 = 𝑠 → (𝐵 ≤ (𝐹𝑡) ↔ 𝐵 ≤ (𝐹𝑠)))
3728, 29, 34, 36elrabf 3517 . . . . 5 (𝑠 ∈ {𝑡𝑇𝐵 ≤ (𝐹𝑡)} ↔ (𝑠𝑇𝐵 ≤ (𝐹𝑠)))
3827, 37syl6bbr 280 . . . 4 (𝜑 → (𝑠 ∈ (𝐹 “ (𝐵[,)+∞)) ↔ 𝑠 ∈ {𝑡𝑇𝐵 ≤ (𝐹𝑡)}))
3938eqrdv 2763 . . 3 (𝜑 → (𝐹 “ (𝐵[,)+∞)) = {𝑡𝑇𝐵 ≤ (𝐹𝑡)})
40 rfcnpre3.5 . . 3 𝐴 = {𝑡𝑇𝐵 ≤ (𝐹𝑡)}
4139, 40syl6eqr 2817 . 2 (𝜑 → (𝐹 “ (𝐵[,)+∞)) = 𝐴)
42 icopnfcld 22864 . . . . 5 (𝐵 ∈ ℝ → (𝐵[,)+∞) ∈ (Clsd‘(topGen‘ran (,))))
439, 42syl 17 . . . 4 (𝜑 → (𝐵[,)+∞) ∈ (Clsd‘(topGen‘ran (,))))
441fveq2i 6382 . . . 4 (Clsd‘𝐾) = (Clsd‘(topGen‘ran (,)))
4543, 44syl6eleqr 2855 . . 3 (𝜑 → (𝐵[,)+∞) ∈ (Clsd‘𝐾))
46 cnclima 21366 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐵[,)+∞) ∈ (Clsd‘𝐾)) → (𝐹 “ (𝐵[,)+∞)) ∈ (Clsd‘𝐽))
474, 45, 46syl2anc 579 . 2 (𝜑 → (𝐹 “ (𝐵[,)+∞)) ∈ (Clsd‘𝐽))
4841, 47eqeltrrd 2845 1 (𝜑𝐴 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wnfc 2894  {crab 3059   cuni 4596   class class class wbr 4811  ccnv 5278  ran crn 5280  cima 5282   Fn wfn 6065  wf 6066  cfv 6070  (class class class)co 6846  cr 10192  +∞cpnf 10329  *cxr 10331   < clt 10332  cle 10333  (,)cioo 12382  [,)cico 12384  topGenctg 16378  Clsdccld 21114   Cn ccn 21322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270  ax-pre-sup 10271
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-om 7268  df-1st 7370  df-2nd 7371  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-er 7951  df-map 8066  df-en 8165  df-dom 8166  df-sdom 8167  df-sup 8559  df-inf 8560  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10526  df-neg 10527  df-div 10943  df-nn 11279  df-n0 11543  df-z 11629  df-uz 11892  df-q 11995  df-ioo 12386  df-ico 12388  df-topgen 16384  df-top 20992  df-topon 21009  df-bases 21044  df-cld 21117  df-cn 21325
This theorem is referenced by:  stoweidlem59  40937
  Copyright terms: Public domain W3C validator