Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rfcnpre3 Structured version   Visualization version   GIF version

Theorem rfcnpre3 45027
Description: If F is a continuous function with respect to the standard topology, then the preimage A of the values greater than or equal to a given real B is a closed set. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
rfcnpre3.2 𝑡𝐹
rfcnpre3.3 𝐾 = (topGen‘ran (,))
rfcnpre3.4 𝑇 = 𝐽
rfcnpre3.5 𝐴 = {𝑡𝑇𝐵 ≤ (𝐹𝑡)}
rfcnpre3.6 (𝜑𝐵 ∈ ℝ)
rfcnpre3.8 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
rfcnpre3 (𝜑𝐴 ∈ (Clsd‘𝐽))
Distinct variable groups:   𝑡,𝐵   𝑡,𝑇
Allowed substitution hints:   𝜑(𝑡)   𝐴(𝑡)   𝐹(𝑡)   𝐽(𝑡)   𝐾(𝑡)

Proof of Theorem rfcnpre3
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 rfcnpre3.3 . . . . . . . 8 𝐾 = (topGen‘ran (,))
2 rfcnpre3.4 . . . . . . . 8 𝑇 = 𝐽
3 eqid 2729 . . . . . . . 8 (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾)
4 rfcnpre3.8 . . . . . . . 8 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
51, 2, 3, 4fcnre 45019 . . . . . . 7 (𝜑𝐹:𝑇⟶ℝ)
6 ffn 6688 . . . . . . 7 (𝐹:𝑇⟶ℝ → 𝐹 Fn 𝑇)
7 elpreima 7030 . . . . . . 7 (𝐹 Fn 𝑇 → (𝑠 ∈ (𝐹 “ (𝐵[,)+∞)) ↔ (𝑠𝑇 ∧ (𝐹𝑠) ∈ (𝐵[,)+∞))))
85, 6, 73syl 18 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐹 “ (𝐵[,)+∞)) ↔ (𝑠𝑇 ∧ (𝐹𝑠) ∈ (𝐵[,)+∞))))
9 rfcnpre3.6 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
109rexrd 11224 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ*)
1110adantr 480 . . . . . . . . 9 ((𝜑𝑠𝑇) → 𝐵 ∈ ℝ*)
12 pnfxr 11228 . . . . . . . . 9 +∞ ∈ ℝ*
13 elico1 13349 . . . . . . . . 9 ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐹𝑠) ∈ (𝐵[,)+∞) ↔ ((𝐹𝑠) ∈ ℝ*𝐵 ≤ (𝐹𝑠) ∧ (𝐹𝑠) < +∞)))
1411, 12, 13sylancl 586 . . . . . . . 8 ((𝜑𝑠𝑇) → ((𝐹𝑠) ∈ (𝐵[,)+∞) ↔ ((𝐹𝑠) ∈ ℝ*𝐵 ≤ (𝐹𝑠) ∧ (𝐹𝑠) < +∞)))
15 simpr2 1196 . . . . . . . . 9 (((𝜑𝑠𝑇) ∧ ((𝐹𝑠) ∈ ℝ*𝐵 ≤ (𝐹𝑠) ∧ (𝐹𝑠) < +∞)) → 𝐵 ≤ (𝐹𝑠))
165ffvelcdmda 7056 . . . . . . . . . . . 12 ((𝜑𝑠𝑇) → (𝐹𝑠) ∈ ℝ)
1716rexrd 11224 . . . . . . . . . . 11 ((𝜑𝑠𝑇) → (𝐹𝑠) ∈ ℝ*)
1817adantr 480 . . . . . . . . . 10 (((𝜑𝑠𝑇) ∧ 𝐵 ≤ (𝐹𝑠)) → (𝐹𝑠) ∈ ℝ*)
19 simpr 484 . . . . . . . . . 10 (((𝜑𝑠𝑇) ∧ 𝐵 ≤ (𝐹𝑠)) → 𝐵 ≤ (𝐹𝑠))
2016adantr 480 . . . . . . . . . . 11 (((𝜑𝑠𝑇) ∧ 𝐵 ≤ (𝐹𝑠)) → (𝐹𝑠) ∈ ℝ)
21 ltpnf 13080 . . . . . . . . . . 11 ((𝐹𝑠) ∈ ℝ → (𝐹𝑠) < +∞)
2220, 21syl 17 . . . . . . . . . 10 (((𝜑𝑠𝑇) ∧ 𝐵 ≤ (𝐹𝑠)) → (𝐹𝑠) < +∞)
2318, 19, 223jca 1128 . . . . . . . . 9 (((𝜑𝑠𝑇) ∧ 𝐵 ≤ (𝐹𝑠)) → ((𝐹𝑠) ∈ ℝ*𝐵 ≤ (𝐹𝑠) ∧ (𝐹𝑠) < +∞))
2415, 23impbida 800 . . . . . . . 8 ((𝜑𝑠𝑇) → (((𝐹𝑠) ∈ ℝ*𝐵 ≤ (𝐹𝑠) ∧ (𝐹𝑠) < +∞) ↔ 𝐵 ≤ (𝐹𝑠)))
2514, 24bitrd 279 . . . . . . 7 ((𝜑𝑠𝑇) → ((𝐹𝑠) ∈ (𝐵[,)+∞) ↔ 𝐵 ≤ (𝐹𝑠)))
2625pm5.32da 579 . . . . . 6 (𝜑 → ((𝑠𝑇 ∧ (𝐹𝑠) ∈ (𝐵[,)+∞)) ↔ (𝑠𝑇𝐵 ≤ (𝐹𝑠))))
278, 26bitrd 279 . . . . 5 (𝜑 → (𝑠 ∈ (𝐹 “ (𝐵[,)+∞)) ↔ (𝑠𝑇𝐵 ≤ (𝐹𝑠))))
28 nfcv 2891 . . . . . 6 𝑡𝑠
29 nfcv 2891 . . . . . 6 𝑡𝑇
30 nfcv 2891 . . . . . . 7 𝑡𝐵
31 nfcv 2891 . . . . . . 7 𝑡
32 rfcnpre3.2 . . . . . . . 8 𝑡𝐹
3332, 28nffv 6868 . . . . . . 7 𝑡(𝐹𝑠)
3430, 31, 33nfbr 5154 . . . . . 6 𝑡 𝐵 ≤ (𝐹𝑠)
35 fveq2 6858 . . . . . . 7 (𝑡 = 𝑠 → (𝐹𝑡) = (𝐹𝑠))
3635breq2d 5119 . . . . . 6 (𝑡 = 𝑠 → (𝐵 ≤ (𝐹𝑡) ↔ 𝐵 ≤ (𝐹𝑠)))
3728, 29, 34, 36elrabf 3655 . . . . 5 (𝑠 ∈ {𝑡𝑇𝐵 ≤ (𝐹𝑡)} ↔ (𝑠𝑇𝐵 ≤ (𝐹𝑠)))
3827, 37bitr4di 289 . . . 4 (𝜑 → (𝑠 ∈ (𝐹 “ (𝐵[,)+∞)) ↔ 𝑠 ∈ {𝑡𝑇𝐵 ≤ (𝐹𝑡)}))
3938eqrdv 2727 . . 3 (𝜑 → (𝐹 “ (𝐵[,)+∞)) = {𝑡𝑇𝐵 ≤ (𝐹𝑡)})
40 rfcnpre3.5 . . 3 𝐴 = {𝑡𝑇𝐵 ≤ (𝐹𝑡)}
4139, 40eqtr4di 2782 . 2 (𝜑 → (𝐹 “ (𝐵[,)+∞)) = 𝐴)
42 icopnfcld 24655 . . . . 5 (𝐵 ∈ ℝ → (𝐵[,)+∞) ∈ (Clsd‘(topGen‘ran (,))))
439, 42syl 17 . . . 4 (𝜑 → (𝐵[,)+∞) ∈ (Clsd‘(topGen‘ran (,))))
441fveq2i 6861 . . . 4 (Clsd‘𝐾) = (Clsd‘(topGen‘ran (,)))
4543, 44eleqtrrdi 2839 . . 3 (𝜑 → (𝐵[,)+∞) ∈ (Clsd‘𝐾))
46 cnclima 23155 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐵[,)+∞) ∈ (Clsd‘𝐾)) → (𝐹 “ (𝐵[,)+∞)) ∈ (Clsd‘𝐽))
474, 45, 46syl2anc 584 . 2 (𝜑 → (𝐹 “ (𝐵[,)+∞)) ∈ (Clsd‘𝐽))
4841, 47eqeltrrd 2829 1 (𝜑𝐴 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wnfc 2876  {crab 3405   cuni 4871   class class class wbr 5107  ccnv 5637  ran crn 5639  cima 5641   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  cr 11067  +∞cpnf 11205  *cxr 11207   < clt 11208  cle 11209  (,)cioo 13306  [,)cico 13308  topGenctg 17400  Clsdccld 22903   Cn ccn 23111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-ioo 13310  df-ico 13312  df-topgen 17406  df-top 22781  df-topon 22798  df-bases 22833  df-cld 22906  df-cn 23114
This theorem is referenced by:  stoweidlem59  46057
  Copyright terms: Public domain W3C validator