Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rfcnpre3 Structured version   Visualization version   GIF version

Theorem rfcnpre3 41174
Description: If F is a continuous function with respect to the standard topology, then the preimage A of the values greater than or equal to a given real B is a closed set. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
rfcnpre3.2 𝑡𝐹
rfcnpre3.3 𝐾 = (topGen‘ran (,))
rfcnpre3.4 𝑇 = 𝐽
rfcnpre3.5 𝐴 = {𝑡𝑇𝐵 ≤ (𝐹𝑡)}
rfcnpre3.6 (𝜑𝐵 ∈ ℝ)
rfcnpre3.8 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
rfcnpre3 (𝜑𝐴 ∈ (Clsd‘𝐽))
Distinct variable groups:   𝑡,𝐵   𝑡,𝑇
Allowed substitution hints:   𝜑(𝑡)   𝐴(𝑡)   𝐹(𝑡)   𝐽(𝑡)   𝐾(𝑡)

Proof of Theorem rfcnpre3
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 rfcnpre3.3 . . . . . . . 8 𝐾 = (topGen‘ran (,))
2 rfcnpre3.4 . . . . . . . 8 𝑇 = 𝐽
3 eqid 2826 . . . . . . . 8 (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾)
4 rfcnpre3.8 . . . . . . . 8 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
51, 2, 3, 4fcnre 41166 . . . . . . 7 (𝜑𝐹:𝑇⟶ℝ)
6 ffn 6513 . . . . . . 7 (𝐹:𝑇⟶ℝ → 𝐹 Fn 𝑇)
7 elpreima 6826 . . . . . . 7 (𝐹 Fn 𝑇 → (𝑠 ∈ (𝐹 “ (𝐵[,)+∞)) ↔ (𝑠𝑇 ∧ (𝐹𝑠) ∈ (𝐵[,)+∞))))
85, 6, 73syl 18 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐹 “ (𝐵[,)+∞)) ↔ (𝑠𝑇 ∧ (𝐹𝑠) ∈ (𝐵[,)+∞))))
9 rfcnpre3.6 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
109rexrd 10685 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ*)
1110adantr 481 . . . . . . . . 9 ((𝜑𝑠𝑇) → 𝐵 ∈ ℝ*)
12 pnfxr 10689 . . . . . . . . 9 +∞ ∈ ℝ*
13 elico1 12776 . . . . . . . . 9 ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐹𝑠) ∈ (𝐵[,)+∞) ↔ ((𝐹𝑠) ∈ ℝ*𝐵 ≤ (𝐹𝑠) ∧ (𝐹𝑠) < +∞)))
1411, 12, 13sylancl 586 . . . . . . . 8 ((𝜑𝑠𝑇) → ((𝐹𝑠) ∈ (𝐵[,)+∞) ↔ ((𝐹𝑠) ∈ ℝ*𝐵 ≤ (𝐹𝑠) ∧ (𝐹𝑠) < +∞)))
15 simpr2 1189 . . . . . . . . 9 (((𝜑𝑠𝑇) ∧ ((𝐹𝑠) ∈ ℝ*𝐵 ≤ (𝐹𝑠) ∧ (𝐹𝑠) < +∞)) → 𝐵 ≤ (𝐹𝑠))
165ffvelrnda 6849 . . . . . . . . . . . 12 ((𝜑𝑠𝑇) → (𝐹𝑠) ∈ ℝ)
1716rexrd 10685 . . . . . . . . . . 11 ((𝜑𝑠𝑇) → (𝐹𝑠) ∈ ℝ*)
1817adantr 481 . . . . . . . . . 10 (((𝜑𝑠𝑇) ∧ 𝐵 ≤ (𝐹𝑠)) → (𝐹𝑠) ∈ ℝ*)
19 simpr 485 . . . . . . . . . 10 (((𝜑𝑠𝑇) ∧ 𝐵 ≤ (𝐹𝑠)) → 𝐵 ≤ (𝐹𝑠))
2016adantr 481 . . . . . . . . . . 11 (((𝜑𝑠𝑇) ∧ 𝐵 ≤ (𝐹𝑠)) → (𝐹𝑠) ∈ ℝ)
21 ltpnf 12510 . . . . . . . . . . 11 ((𝐹𝑠) ∈ ℝ → (𝐹𝑠) < +∞)
2220, 21syl 17 . . . . . . . . . 10 (((𝜑𝑠𝑇) ∧ 𝐵 ≤ (𝐹𝑠)) → (𝐹𝑠) < +∞)
2318, 19, 223jca 1122 . . . . . . . . 9 (((𝜑𝑠𝑇) ∧ 𝐵 ≤ (𝐹𝑠)) → ((𝐹𝑠) ∈ ℝ*𝐵 ≤ (𝐹𝑠) ∧ (𝐹𝑠) < +∞))
2415, 23impbida 797 . . . . . . . 8 ((𝜑𝑠𝑇) → (((𝐹𝑠) ∈ ℝ*𝐵 ≤ (𝐹𝑠) ∧ (𝐹𝑠) < +∞) ↔ 𝐵 ≤ (𝐹𝑠)))
2514, 24bitrd 280 . . . . . . 7 ((𝜑𝑠𝑇) → ((𝐹𝑠) ∈ (𝐵[,)+∞) ↔ 𝐵 ≤ (𝐹𝑠)))
2625pm5.32da 579 . . . . . 6 (𝜑 → ((𝑠𝑇 ∧ (𝐹𝑠) ∈ (𝐵[,)+∞)) ↔ (𝑠𝑇𝐵 ≤ (𝐹𝑠))))
278, 26bitrd 280 . . . . 5 (𝜑 → (𝑠 ∈ (𝐹 “ (𝐵[,)+∞)) ↔ (𝑠𝑇𝐵 ≤ (𝐹𝑠))))
28 nfcv 2982 . . . . . 6 𝑡𝑠
29 nfcv 2982 . . . . . 6 𝑡𝑇
30 nfcv 2982 . . . . . . 7 𝑡𝐵
31 nfcv 2982 . . . . . . 7 𝑡
32 rfcnpre3.2 . . . . . . . 8 𝑡𝐹
3332, 28nffv 6679 . . . . . . 7 𝑡(𝐹𝑠)
3430, 31, 33nfbr 5110 . . . . . 6 𝑡 𝐵 ≤ (𝐹𝑠)
35 fveq2 6669 . . . . . . 7 (𝑡 = 𝑠 → (𝐹𝑡) = (𝐹𝑠))
3635breq2d 5075 . . . . . 6 (𝑡 = 𝑠 → (𝐵 ≤ (𝐹𝑡) ↔ 𝐵 ≤ (𝐹𝑠)))
3728, 29, 34, 36elrabf 3680 . . . . 5 (𝑠 ∈ {𝑡𝑇𝐵 ≤ (𝐹𝑡)} ↔ (𝑠𝑇𝐵 ≤ (𝐹𝑠)))
3827, 37syl6bbr 290 . . . 4 (𝜑 → (𝑠 ∈ (𝐹 “ (𝐵[,)+∞)) ↔ 𝑠 ∈ {𝑡𝑇𝐵 ≤ (𝐹𝑡)}))
3938eqrdv 2824 . . 3 (𝜑 → (𝐹 “ (𝐵[,)+∞)) = {𝑡𝑇𝐵 ≤ (𝐹𝑡)})
40 rfcnpre3.5 . . 3 𝐴 = {𝑡𝑇𝐵 ≤ (𝐹𝑡)}
4139, 40syl6eqr 2879 . 2 (𝜑 → (𝐹 “ (𝐵[,)+∞)) = 𝐴)
42 icopnfcld 23310 . . . . 5 (𝐵 ∈ ℝ → (𝐵[,)+∞) ∈ (Clsd‘(topGen‘ran (,))))
439, 42syl 17 . . . 4 (𝜑 → (𝐵[,)+∞) ∈ (Clsd‘(topGen‘ran (,))))
441fveq2i 6672 . . . 4 (Clsd‘𝐾) = (Clsd‘(topGen‘ran (,)))
4543, 44syl6eleqr 2929 . . 3 (𝜑 → (𝐵[,)+∞) ∈ (Clsd‘𝐾))
46 cnclima 21811 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐵[,)+∞) ∈ (Clsd‘𝐾)) → (𝐹 “ (𝐵[,)+∞)) ∈ (Clsd‘𝐽))
474, 45, 46syl2anc 584 . 2 (𝜑 → (𝐹 “ (𝐵[,)+∞)) ∈ (Clsd‘𝐽))
4841, 47eqeltrrd 2919 1 (𝜑𝐴 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wnfc 2966  {crab 3147   cuni 4837   class class class wbr 5063  ccnv 5553  ran crn 5555  cima 5557   Fn wfn 6349  wf 6350  cfv 6354  (class class class)co 7150  cr 10530  +∞cpnf 10666  *cxr 10668   < clt 10669  cle 10670  (,)cioo 12733  [,)cico 12735  topGenctg 16706  Clsdccld 21559   Cn ccn 21767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-1st 7685  df-2nd 7686  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8284  df-map 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-ioo 12737  df-ico 12739  df-topgen 16712  df-top 21437  df-topon 21454  df-bases 21489  df-cld 21562  df-cn 21770
This theorem is referenced by:  stoweidlem59  42229
  Copyright terms: Public domain W3C validator