Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rfcnpre3 Structured version   Visualization version   GIF version

Theorem rfcnpre3 41677
 Description: If F is a continuous function with respect to the standard topology, then the preimage A of the values greater than or equal to a given real B is a closed set. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
rfcnpre3.2 𝑡𝐹
rfcnpre3.3 𝐾 = (topGen‘ran (,))
rfcnpre3.4 𝑇 = 𝐽
rfcnpre3.5 𝐴 = {𝑡𝑇𝐵 ≤ (𝐹𝑡)}
rfcnpre3.6 (𝜑𝐵 ∈ ℝ)
rfcnpre3.8 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
rfcnpre3 (𝜑𝐴 ∈ (Clsd‘𝐽))
Distinct variable groups:   𝑡,𝐵   𝑡,𝑇
Allowed substitution hints:   𝜑(𝑡)   𝐴(𝑡)   𝐹(𝑡)   𝐽(𝑡)   𝐾(𝑡)

Proof of Theorem rfcnpre3
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 rfcnpre3.3 . . . . . . . 8 𝐾 = (topGen‘ran (,))
2 rfcnpre3.4 . . . . . . . 8 𝑇 = 𝐽
3 eqid 2798 . . . . . . . 8 (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾)
4 rfcnpre3.8 . . . . . . . 8 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
51, 2, 3, 4fcnre 41669 . . . . . . 7 (𝜑𝐹:𝑇⟶ℝ)
6 ffn 6487 . . . . . . 7 (𝐹:𝑇⟶ℝ → 𝐹 Fn 𝑇)
7 elpreima 6805 . . . . . . 7 (𝐹 Fn 𝑇 → (𝑠 ∈ (𝐹 “ (𝐵[,)+∞)) ↔ (𝑠𝑇 ∧ (𝐹𝑠) ∈ (𝐵[,)+∞))))
85, 6, 73syl 18 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐹 “ (𝐵[,)+∞)) ↔ (𝑠𝑇 ∧ (𝐹𝑠) ∈ (𝐵[,)+∞))))
9 rfcnpre3.6 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
109rexrd 10682 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ*)
1110adantr 484 . . . . . . . . 9 ((𝜑𝑠𝑇) → 𝐵 ∈ ℝ*)
12 pnfxr 10686 . . . . . . . . 9 +∞ ∈ ℝ*
13 elico1 12771 . . . . . . . . 9 ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐹𝑠) ∈ (𝐵[,)+∞) ↔ ((𝐹𝑠) ∈ ℝ*𝐵 ≤ (𝐹𝑠) ∧ (𝐹𝑠) < +∞)))
1411, 12, 13sylancl 589 . . . . . . . 8 ((𝜑𝑠𝑇) → ((𝐹𝑠) ∈ (𝐵[,)+∞) ↔ ((𝐹𝑠) ∈ ℝ*𝐵 ≤ (𝐹𝑠) ∧ (𝐹𝑠) < +∞)))
15 simpr2 1192 . . . . . . . . 9 (((𝜑𝑠𝑇) ∧ ((𝐹𝑠) ∈ ℝ*𝐵 ≤ (𝐹𝑠) ∧ (𝐹𝑠) < +∞)) → 𝐵 ≤ (𝐹𝑠))
165ffvelrnda 6828 . . . . . . . . . . . 12 ((𝜑𝑠𝑇) → (𝐹𝑠) ∈ ℝ)
1716rexrd 10682 . . . . . . . . . . 11 ((𝜑𝑠𝑇) → (𝐹𝑠) ∈ ℝ*)
1817adantr 484 . . . . . . . . . 10 (((𝜑𝑠𝑇) ∧ 𝐵 ≤ (𝐹𝑠)) → (𝐹𝑠) ∈ ℝ*)
19 simpr 488 . . . . . . . . . 10 (((𝜑𝑠𝑇) ∧ 𝐵 ≤ (𝐹𝑠)) → 𝐵 ≤ (𝐹𝑠))
2016adantr 484 . . . . . . . . . . 11 (((𝜑𝑠𝑇) ∧ 𝐵 ≤ (𝐹𝑠)) → (𝐹𝑠) ∈ ℝ)
21 ltpnf 12505 . . . . . . . . . . 11 ((𝐹𝑠) ∈ ℝ → (𝐹𝑠) < +∞)
2220, 21syl 17 . . . . . . . . . 10 (((𝜑𝑠𝑇) ∧ 𝐵 ≤ (𝐹𝑠)) → (𝐹𝑠) < +∞)
2318, 19, 223jca 1125 . . . . . . . . 9 (((𝜑𝑠𝑇) ∧ 𝐵 ≤ (𝐹𝑠)) → ((𝐹𝑠) ∈ ℝ*𝐵 ≤ (𝐹𝑠) ∧ (𝐹𝑠) < +∞))
2415, 23impbida 800 . . . . . . . 8 ((𝜑𝑠𝑇) → (((𝐹𝑠) ∈ ℝ*𝐵 ≤ (𝐹𝑠) ∧ (𝐹𝑠) < +∞) ↔ 𝐵 ≤ (𝐹𝑠)))
2514, 24bitrd 282 . . . . . . 7 ((𝜑𝑠𝑇) → ((𝐹𝑠) ∈ (𝐵[,)+∞) ↔ 𝐵 ≤ (𝐹𝑠)))
2625pm5.32da 582 . . . . . 6 (𝜑 → ((𝑠𝑇 ∧ (𝐹𝑠) ∈ (𝐵[,)+∞)) ↔ (𝑠𝑇𝐵 ≤ (𝐹𝑠))))
278, 26bitrd 282 . . . . 5 (𝜑 → (𝑠 ∈ (𝐹 “ (𝐵[,)+∞)) ↔ (𝑠𝑇𝐵 ≤ (𝐹𝑠))))
28 nfcv 2955 . . . . . 6 𝑡𝑠
29 nfcv 2955 . . . . . 6 𝑡𝑇
30 nfcv 2955 . . . . . . 7 𝑡𝐵
31 nfcv 2955 . . . . . . 7 𝑡
32 rfcnpre3.2 . . . . . . . 8 𝑡𝐹
3332, 28nffv 6655 . . . . . . 7 𝑡(𝐹𝑠)
3430, 31, 33nfbr 5077 . . . . . 6 𝑡 𝐵 ≤ (𝐹𝑠)
35 fveq2 6645 . . . . . . 7 (𝑡 = 𝑠 → (𝐹𝑡) = (𝐹𝑠))
3635breq2d 5042 . . . . . 6 (𝑡 = 𝑠 → (𝐵 ≤ (𝐹𝑡) ↔ 𝐵 ≤ (𝐹𝑠)))
3728, 29, 34, 36elrabf 3624 . . . . 5 (𝑠 ∈ {𝑡𝑇𝐵 ≤ (𝐹𝑡)} ↔ (𝑠𝑇𝐵 ≤ (𝐹𝑠)))
3827, 37bitr4di 292 . . . 4 (𝜑 → (𝑠 ∈ (𝐹 “ (𝐵[,)+∞)) ↔ 𝑠 ∈ {𝑡𝑇𝐵 ≤ (𝐹𝑡)}))
3938eqrdv 2796 . . 3 (𝜑 → (𝐹 “ (𝐵[,)+∞)) = {𝑡𝑇𝐵 ≤ (𝐹𝑡)})
40 rfcnpre3.5 . . 3 𝐴 = {𝑡𝑇𝐵 ≤ (𝐹𝑡)}
4139, 40eqtr4di 2851 . 2 (𝜑 → (𝐹 “ (𝐵[,)+∞)) = 𝐴)
42 icopnfcld 23380 . . . . 5 (𝐵 ∈ ℝ → (𝐵[,)+∞) ∈ (Clsd‘(topGen‘ran (,))))
439, 42syl 17 . . . 4 (𝜑 → (𝐵[,)+∞) ∈ (Clsd‘(topGen‘ran (,))))
441fveq2i 6648 . . . 4 (Clsd‘𝐾) = (Clsd‘(topGen‘ran (,)))
4543, 44eleqtrrdi 2901 . . 3 (𝜑 → (𝐵[,)+∞) ∈ (Clsd‘𝐾))
46 cnclima 21880 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐵[,)+∞) ∈ (Clsd‘𝐾)) → (𝐹 “ (𝐵[,)+∞)) ∈ (Clsd‘𝐽))
474, 45, 46syl2anc 587 . 2 (𝜑 → (𝐹 “ (𝐵[,)+∞)) ∈ (Clsd‘𝐽))
4841, 47eqeltrrd 2891 1 (𝜑𝐴 ∈ (Clsd‘𝐽))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  Ⅎwnfc 2936  {crab 3110  ∪ cuni 4800   class class class wbr 5030  ◡ccnv 5518  ran crn 5520   “ cima 5522   Fn wfn 6319  ⟶wf 6320  ‘cfv 6324  (class class class)co 7135  ℝcr 10527  +∞cpnf 10663  ℝ*cxr 10665   < clt 10666   ≤ cle 10667  (,)cioo 12728  [,)cico 12730  topGenctg 16705  Clsdccld 21628   Cn ccn 21836 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-pre-mulgt0 10605  ax-pre-sup 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7563  df-1st 7673  df-2nd 7674  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-er 8274  df-map 8393  df-en 8495  df-dom 8496  df-sdom 8497  df-sup 8892  df-inf 8893  df-pnf 10668  df-mnf 10669  df-xr 10670  df-ltxr 10671  df-le 10672  df-sub 10863  df-neg 10864  df-div 11289  df-nn 11628  df-n0 11888  df-z 11972  df-uz 12234  df-q 12339  df-ioo 12732  df-ico 12734  df-topgen 16711  df-top 21506  df-topon 21523  df-bases 21558  df-cld 21631  df-cn 21839 This theorem is referenced by:  stoweidlem59  42716
 Copyright terms: Public domain W3C validator