![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > en1eqsnbi | Structured version Visualization version GIF version |
Description: A set containing an element has exactly one element iff it is a singleton. Formerly part of proof for rngen1zr 19636. (Contributed by FL, 13-Feb-2010.) (Revised by AV, 25-Jan-2020.) |
Ref | Expression |
---|---|
en1eqsnbi | ⊢ (𝐴 ∈ 𝐵 → (𝐵 ≈ 1o ↔ 𝐵 = {𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en1eqsn 8458 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → 𝐵 = {𝐴}) | |
2 | 1 | ex 403 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐵 ≈ 1o → 𝐵 = {𝐴})) |
3 | ensn1g 8286 | . . 3 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ≈ 1o) | |
4 | breq1 4875 | . . 3 ⊢ (𝐵 = {𝐴} → (𝐵 ≈ 1o ↔ {𝐴} ≈ 1o)) | |
5 | 3, 4 | syl5ibrcom 239 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐵 = {𝐴} → 𝐵 ≈ 1o)) |
6 | 2, 5 | impbid 204 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐵 ≈ 1o ↔ 𝐵 = {𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1658 ∈ wcel 2166 {csn 4396 class class class wbr 4872 1oc1o 7818 ≈ cen 8218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-sep 5004 ax-nul 5012 ax-pow 5064 ax-pr 5126 ax-un 7208 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-ral 3121 df-rex 3122 df-rab 3125 df-v 3415 df-sbc 3662 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-pss 3813 df-nul 4144 df-if 4306 df-pw 4379 df-sn 4397 df-pr 4399 df-tp 4401 df-op 4403 df-uni 4658 df-br 4873 df-opab 4935 df-tr 4975 df-id 5249 df-eprel 5254 df-po 5262 df-so 5263 df-fr 5300 df-we 5302 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-rn 5352 df-res 5353 df-ima 5354 df-ord 5965 df-on 5966 df-lim 5967 df-suc 5968 df-iota 6085 df-fun 6124 df-fn 6125 df-f 6126 df-f1 6127 df-fo 6128 df-f1o 6129 df-fv 6130 df-om 7326 df-1o 7825 df-er 8008 df-en 8222 df-dom 8223 df-sdom 8224 df-fin 8225 |
This theorem is referenced by: srgen1zr 18883 rngen1zr 19636 rngosn4 34265 |
Copyright terms: Public domain | W3C validator |