MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en1eqsnbi Structured version   Visualization version   GIF version

Theorem en1eqsnbi 8459
Description: A set containing an element has exactly one element iff it is a singleton. Formerly part of proof for rngen1zr 19636. (Contributed by FL, 13-Feb-2010.) (Revised by AV, 25-Jan-2020.)
Assertion
Ref Expression
en1eqsnbi (𝐴𝐵 → (𝐵 ≈ 1o𝐵 = {𝐴}))

Proof of Theorem en1eqsnbi
StepHypRef Expression
1 en1eqsn 8458 . . 3 ((𝐴𝐵𝐵 ≈ 1o) → 𝐵 = {𝐴})
21ex 403 . 2 (𝐴𝐵 → (𝐵 ≈ 1o𝐵 = {𝐴}))
3 ensn1g 8286 . . 3 (𝐴𝐵 → {𝐴} ≈ 1o)
4 breq1 4875 . . 3 (𝐵 = {𝐴} → (𝐵 ≈ 1o ↔ {𝐴} ≈ 1o))
53, 4syl5ibrcom 239 . 2 (𝐴𝐵 → (𝐵 = {𝐴} → 𝐵 ≈ 1o))
62, 5impbid 204 1 (𝐴𝐵 → (𝐵 ≈ 1o𝐵 = {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1658  wcel 2166  {csn 4396   class class class wbr 4872  1oc1o 7818  cen 8218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-ral 3121  df-rex 3122  df-rab 3125  df-v 3415  df-sbc 3662  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-pss 3813  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-tp 4401  df-op 4403  df-uni 4658  df-br 4873  df-opab 4935  df-tr 4975  df-id 5249  df-eprel 5254  df-po 5262  df-so 5263  df-fr 5300  df-we 5302  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-ord 5965  df-on 5966  df-lim 5967  df-suc 5968  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-om 7326  df-1o 7825  df-er 8008  df-en 8222  df-dom 8223  df-sdom 8224  df-fin 8225
This theorem is referenced by:  srgen1zr  18883  rngen1zr  19636  rngosn4  34265
  Copyright terms: Public domain W3C validator