| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > en1eqsnbi | Structured version Visualization version GIF version | ||
| Description: A set containing an element has exactly one element iff it is a singleton. Formerly part of proof for rngen1zr 20662. (Contributed by FL, 13-Feb-2010.) (Revised by AV, 25-Jan-2020.) |
| Ref | Expression |
|---|---|
| en1eqsnbi | ⊢ (𝐴 ∈ 𝐵 → (𝐵 ≈ 1o ↔ 𝐵 = {𝐴})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en1eqsn 9195 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → 𝐵 = {𝐴}) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐵 ≈ 1o → 𝐵 = {𝐴})) |
| 3 | ensn1g 8970 | . . 3 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ≈ 1o) | |
| 4 | breq1 5105 | . . 3 ⊢ (𝐵 = {𝐴} → (𝐵 ≈ 1o ↔ {𝐴} ≈ 1o)) | |
| 5 | 3, 4 | syl5ibrcom 247 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐵 = {𝐴} → 𝐵 ≈ 1o)) |
| 6 | 2, 5 | impbid 212 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐵 ≈ 1o ↔ 𝐵 = {𝐴})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {csn 4585 class class class wbr 5102 1oc1o 8404 ≈ cen 8892 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-1o 8411 df-en 8896 |
| This theorem is referenced by: srgen1zr 20101 rngen1zr 20662 rngosn4 37892 |
| Copyright terms: Public domain | W3C validator |