MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en1eqsnbi Structured version   Visualization version   GIF version

Theorem en1eqsnbi 9297
Description: A set containing an element has exactly one element iff it is a singleton. Formerly part of proof for rngen1zr 20667. (Contributed by FL, 13-Feb-2010.) (Revised by AV, 25-Jan-2020.)
Assertion
Ref Expression
en1eqsnbi (𝐴𝐵 → (𝐵 ≈ 1o𝐵 = {𝐴}))

Proof of Theorem en1eqsnbi
StepHypRef Expression
1 en1eqsn 9295 . . 3 ((𝐴𝐵𝐵 ≈ 1o) → 𝐵 = {𝐴})
21ex 411 . 2 (𝐴𝐵 → (𝐵 ≈ 1o𝐵 = {𝐴}))
3 ensn1g 9040 . . 3 (𝐴𝐵 → {𝐴} ≈ 1o)
4 breq1 5144 . . 3 (𝐵 = {𝐴} → (𝐵 ≈ 1o ↔ {𝐴} ≈ 1o))
53, 4syl5ibrcom 246 . 2 (𝐴𝐵 → (𝐵 = {𝐴} → 𝐵 ≈ 1o))
62, 5impbid 211 1 (𝐴𝐵 → (𝐵 ≈ 1o𝐵 = {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  {csn 4622   class class class wbr 5141  1oc1o 8476  cen 8957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2166  ax-ext 2696  ax-sep 5292  ax-nul 5299  ax-pr 5421
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4317  df-if 4523  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-br 5142  df-opab 5204  df-id 5568  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-1o 8483  df-en 8961
This theorem is referenced by:  srgen1zr  20158  rngen1zr  20667  rngosn4  37427
  Copyright terms: Public domain W3C validator