MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en1eqsnbi Structured version   Visualization version   GIF version

Theorem en1eqsnbi 9287
Description: A set containing an element has exactly one element iff it is a singleton. Formerly part of proof for rngen1zr 20742. (Contributed by FL, 13-Feb-2010.) (Revised by AV, 25-Jan-2020.)
Assertion
Ref Expression
en1eqsnbi (𝐴𝐵 → (𝐵 ≈ 1o𝐵 = {𝐴}))

Proof of Theorem en1eqsnbi
StepHypRef Expression
1 en1eqsn 9285 . . 3 ((𝐴𝐵𝐵 ≈ 1o) → 𝐵 = {𝐴})
21ex 412 . 2 (𝐴𝐵 → (𝐵 ≈ 1o𝐵 = {𝐴}))
3 ensn1g 9041 . . 3 (𝐴𝐵 → {𝐴} ≈ 1o)
4 breq1 5127 . . 3 (𝐵 = {𝐴} → (𝐵 ≈ 1o ↔ {𝐴} ≈ 1o))
53, 4syl5ibrcom 247 . 2 (𝐴𝐵 → (𝐵 = {𝐴} → 𝐵 ≈ 1o))
62, 5impbid 212 1 (𝐴𝐵 → (𝐵 ≈ 1o𝐵 = {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  {csn 4606   class class class wbr 5124  1oc1o 8478  cen 8961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-1o 8485  df-en 8965
This theorem is referenced by:  srgen1zr  20181  rngen1zr  20742  rngosn4  37954
  Copyright terms: Public domain W3C validator