MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en1eqsn Structured version   Visualization version   GIF version

Theorem en1eqsn 9226
Description: A set with one element is a singleton. (Contributed by FL, 18-Aug-2008.) Avoid ax-pow 5323, ax-un 7714. (Revised by BTernaryTau, 4-Jan-2025.)
Assertion
Ref Expression
en1eqsn ((𝐴𝐵𝐵 ≈ 1o) → 𝐵 = {𝐴})

Proof of Theorem en1eqsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 en1 8998 . . 3 (𝐵 ≈ 1o ↔ ∃𝑥 𝐵 = {𝑥})
2 eleq2 2818 . . . . . . . 8 (𝐵 = {𝑥} → (𝐴𝐵𝐴 ∈ {𝑥}))
3 elsni 4609 . . . . . . . . 9 (𝐴 ∈ {𝑥} → 𝐴 = 𝑥)
43sneqd 4604 . . . . . . . 8 (𝐴 ∈ {𝑥} → {𝐴} = {𝑥})
52, 4biimtrdi 253 . . . . . . 7 (𝐵 = {𝑥} → (𝐴𝐵 → {𝐴} = {𝑥}))
65imp 406 . . . . . 6 ((𝐵 = {𝑥} ∧ 𝐴𝐵) → {𝐴} = {𝑥})
7 eqtr3 2752 . . . . . 6 ((𝐵 = {𝑥} ∧ {𝐴} = {𝑥}) → 𝐵 = {𝐴})
86, 7syldan 591 . . . . 5 ((𝐵 = {𝑥} ∧ 𝐴𝐵) → 𝐵 = {𝐴})
98ex 412 . . . 4 (𝐵 = {𝑥} → (𝐴𝐵𝐵 = {𝐴}))
109exlimiv 1930 . . 3 (∃𝑥 𝐵 = {𝑥} → (𝐴𝐵𝐵 = {𝐴}))
111, 10sylbi 217 . 2 (𝐵 ≈ 1o → (𝐴𝐵𝐵 = {𝐴}))
1211impcom 407 1 ((𝐴𝐵𝐵 ≈ 1o) → 𝐵 = {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  {csn 4592   class class class wbr 5110  1oc1o 8430  cen 8918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-1o 8437  df-en 8922
This theorem is referenced by:  en1eqsnbi  9228  1nsgtrivd  19113  gex1  19528  0cyg  19830  pgpfac1lem3a  20015  pgpfaclem3  20022  0ring  20442  en1top  22878  cnextfres1  23962  xrge0tsmseq  33011  sconnpi1  35233  rngoueqz  37941  isdmn3  38075
  Copyright terms: Public domain W3C validator