MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en1eqsn Structured version   Visualization version   GIF version

Theorem en1eqsn 8818
Description: A set with one element is a singleton. (Contributed by FL, 18-Aug-2008.)
Assertion
Ref Expression
en1eqsn ((𝐴𝐵𝐵 ≈ 1o) → 𝐵 = {𝐴})

Proof of Theorem en1eqsn
StepHypRef Expression
1 1onn 8289 . . . . . 6 1o ∈ ω
2 ssid 3897 . . . . . 6 1o ⊆ 1o
3 ssnnfi 8761 . . . . . 6 ((1o ∈ ω ∧ 1o ⊆ 1o) → 1o ∈ Fin)
41, 2, 3mp2an 692 . . . . 5 1o ∈ Fin
5 enfii 8777 . . . . 5 ((1o ∈ Fin ∧ 𝐵 ≈ 1o) → 𝐵 ∈ Fin)
64, 5mpan 690 . . . 4 (𝐵 ≈ 1o𝐵 ∈ Fin)
76adantl 485 . . 3 ((𝐴𝐵𝐵 ≈ 1o) → 𝐵 ∈ Fin)
8 snssi 4693 . . . 4 (𝐴𝐵 → {𝐴} ⊆ 𝐵)
98adantr 484 . . 3 ((𝐴𝐵𝐵 ≈ 1o) → {𝐴} ⊆ 𝐵)
10 ensn1g 8614 . . . 4 (𝐴𝐵 → {𝐴} ≈ 1o)
11 ensym 8597 . . . 4 (𝐵 ≈ 1o → 1o𝐵)
12 entr 8600 . . . 4 (({𝐴} ≈ 1o ∧ 1o𝐵) → {𝐴} ≈ 𝐵)
1310, 11, 12syl2an 599 . . 3 ((𝐴𝐵𝐵 ≈ 1o) → {𝐴} ≈ 𝐵)
14 fisseneq 8801 . . 3 ((𝐵 ∈ Fin ∧ {𝐴} ⊆ 𝐵 ∧ {𝐴} ≈ 𝐵) → {𝐴} = 𝐵)
157, 9, 13, 14syl3anc 1372 . 2 ((𝐴𝐵𝐵 ≈ 1o) → {𝐴} = 𝐵)
1615eqcomd 2744 1 ((𝐴𝐵𝐵 ≈ 1o) → 𝐵 = {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2113  wss 3841  {csn 4513   class class class wbr 5027  ωcom 7593  1oc1o 8117  cen 8545  Fincfn 8548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3399  df-sbc 3680  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-br 5028  df-opab 5090  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-om 7594  df-1o 8124  df-er 8313  df-en 8549  df-dom 8550  df-sdom 8551  df-fin 8552
This theorem is referenced by:  en1eqsnbi  8819  1nsgtrivd  18437  gex1  18827  0cyg  19125  pgpfac1lem3a  19310  pgpfaclem3  19317  0ring  20155  en1top  21728  cnextfres1  22812  xrge0tsmseq  30888  sconnpi1  32764  rngoueqz  35710  isdmn3  35844
  Copyright terms: Public domain W3C validator