![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > en1eqsn | Structured version Visualization version GIF version |
Description: A set with one element is a singleton. (Contributed by FL, 18-Aug-2008.) Avoid ax-pow 5363, ax-un 7724. (Revised by BTernaryTau, 4-Jan-2025.) |
Ref | Expression |
---|---|
en1eqsn | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → 𝐵 = {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en1 9020 | . . 3 ⊢ (𝐵 ≈ 1o ↔ ∃𝑥 𝐵 = {𝑥}) | |
2 | eleq2 2822 | . . . . . . . 8 ⊢ (𝐵 = {𝑥} → (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ {𝑥})) | |
3 | elsni 4645 | . . . . . . . . 9 ⊢ (𝐴 ∈ {𝑥} → 𝐴 = 𝑥) | |
4 | 3 | sneqd 4640 | . . . . . . . 8 ⊢ (𝐴 ∈ {𝑥} → {𝐴} = {𝑥}) |
5 | 2, 4 | syl6bi 252 | . . . . . . 7 ⊢ (𝐵 = {𝑥} → (𝐴 ∈ 𝐵 → {𝐴} = {𝑥})) |
6 | 5 | imp 407 | . . . . . 6 ⊢ ((𝐵 = {𝑥} ∧ 𝐴 ∈ 𝐵) → {𝐴} = {𝑥}) |
7 | eqtr3 2758 | . . . . . 6 ⊢ ((𝐵 = {𝑥} ∧ {𝐴} = {𝑥}) → 𝐵 = {𝐴}) | |
8 | 6, 7 | syldan 591 | . . . . 5 ⊢ ((𝐵 = {𝑥} ∧ 𝐴 ∈ 𝐵) → 𝐵 = {𝐴}) |
9 | 8 | ex 413 | . . . 4 ⊢ (𝐵 = {𝑥} → (𝐴 ∈ 𝐵 → 𝐵 = {𝐴})) |
10 | 9 | exlimiv 1933 | . . 3 ⊢ (∃𝑥 𝐵 = {𝑥} → (𝐴 ∈ 𝐵 → 𝐵 = {𝐴})) |
11 | 1, 10 | sylbi 216 | . 2 ⊢ (𝐵 ≈ 1o → (𝐴 ∈ 𝐵 → 𝐵 = {𝐴})) |
12 | 11 | impcom 408 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → 𝐵 = {𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 {csn 4628 class class class wbr 5148 1oc1o 8458 ≈ cen 8935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-1o 8465 df-en 8939 |
This theorem is referenced by: en1eqsnbi 9275 1nsgtrivd 19053 gex1 19458 0cyg 19760 pgpfac1lem3a 19945 pgpfaclem3 19952 0ring 20302 en1top 22486 cnextfres1 23571 xrge0tsmseq 32206 sconnpi1 34225 rngoueqz 36803 isdmn3 36937 |
Copyright terms: Public domain | W3C validator |