![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > en1eqsn | Structured version Visualization version GIF version |
Description: A set with one element is a singleton. (Contributed by FL, 18-Aug-2008.) Avoid ax-pow 5353, ax-un 7718. (Revised by BTernaryTau, 4-Jan-2025.) |
Ref | Expression |
---|---|
en1eqsn | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → 𝐵 = {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en1 9017 | . . 3 ⊢ (𝐵 ≈ 1o ↔ ∃𝑥 𝐵 = {𝑥}) | |
2 | eleq2 2814 | . . . . . . . 8 ⊢ (𝐵 = {𝑥} → (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ {𝑥})) | |
3 | elsni 4637 | . . . . . . . . 9 ⊢ (𝐴 ∈ {𝑥} → 𝐴 = 𝑥) | |
4 | 3 | sneqd 4632 | . . . . . . . 8 ⊢ (𝐴 ∈ {𝑥} → {𝐴} = {𝑥}) |
5 | 2, 4 | biimtrdi 252 | . . . . . . 7 ⊢ (𝐵 = {𝑥} → (𝐴 ∈ 𝐵 → {𝐴} = {𝑥})) |
6 | 5 | imp 406 | . . . . . 6 ⊢ ((𝐵 = {𝑥} ∧ 𝐴 ∈ 𝐵) → {𝐴} = {𝑥}) |
7 | eqtr3 2750 | . . . . . 6 ⊢ ((𝐵 = {𝑥} ∧ {𝐴} = {𝑥}) → 𝐵 = {𝐴}) | |
8 | 6, 7 | syldan 590 | . . . . 5 ⊢ ((𝐵 = {𝑥} ∧ 𝐴 ∈ 𝐵) → 𝐵 = {𝐴}) |
9 | 8 | ex 412 | . . . 4 ⊢ (𝐵 = {𝑥} → (𝐴 ∈ 𝐵 → 𝐵 = {𝐴})) |
10 | 9 | exlimiv 1925 | . . 3 ⊢ (∃𝑥 𝐵 = {𝑥} → (𝐴 ∈ 𝐵 → 𝐵 = {𝐴})) |
11 | 1, 10 | sylbi 216 | . 2 ⊢ (𝐵 ≈ 1o → (𝐴 ∈ 𝐵 → 𝐵 = {𝐴})) |
12 | 11 | impcom 407 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → 𝐵 = {𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∃wex 1773 ∈ wcel 2098 {csn 4620 class class class wbr 5138 1oc1o 8454 ≈ cen 8932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-1o 8461 df-en 8936 |
This theorem is referenced by: en1eqsnbi 9272 1nsgtrivd 19091 gex1 19501 0cyg 19803 pgpfac1lem3a 19988 pgpfaclem3 19995 0ring 20416 en1top 22809 cnextfres1 23894 xrge0tsmseq 32679 sconnpi1 34719 rngoueqz 37298 isdmn3 37432 |
Copyright terms: Public domain | W3C validator |