MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en1eqsn Structured version   Visualization version   GIF version

Theorem en1eqsn 9274
Description: A set with one element is a singleton. (Contributed by FL, 18-Aug-2008.) Avoid ax-pow 5364, ax-un 7725. (Revised by BTernaryTau, 4-Jan-2025.)
Assertion
Ref Expression
en1eqsn ((𝐴𝐵𝐵 ≈ 1o) → 𝐵 = {𝐴})

Proof of Theorem en1eqsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 en1 9021 . . 3 (𝐵 ≈ 1o ↔ ∃𝑥 𝐵 = {𝑥})
2 eleq2 2823 . . . . . . . 8 (𝐵 = {𝑥} → (𝐴𝐵𝐴 ∈ {𝑥}))
3 elsni 4646 . . . . . . . . 9 (𝐴 ∈ {𝑥} → 𝐴 = 𝑥)
43sneqd 4641 . . . . . . . 8 (𝐴 ∈ {𝑥} → {𝐴} = {𝑥})
52, 4syl6bi 253 . . . . . . 7 (𝐵 = {𝑥} → (𝐴𝐵 → {𝐴} = {𝑥}))
65imp 408 . . . . . 6 ((𝐵 = {𝑥} ∧ 𝐴𝐵) → {𝐴} = {𝑥})
7 eqtr3 2759 . . . . . 6 ((𝐵 = {𝑥} ∧ {𝐴} = {𝑥}) → 𝐵 = {𝐴})
86, 7syldan 592 . . . . 5 ((𝐵 = {𝑥} ∧ 𝐴𝐵) → 𝐵 = {𝐴})
98ex 414 . . . 4 (𝐵 = {𝑥} → (𝐴𝐵𝐵 = {𝐴}))
109exlimiv 1934 . . 3 (∃𝑥 𝐵 = {𝑥} → (𝐴𝐵𝐵 = {𝐴}))
111, 10sylbi 216 . 2 (𝐵 ≈ 1o → (𝐴𝐵𝐵 = {𝐴}))
1211impcom 409 1 ((𝐴𝐵𝐵 ≈ 1o) → 𝐵 = {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wex 1782  wcel 2107  {csn 4629   class class class wbr 5149  1oc1o 8459  cen 8936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-1o 8466  df-en 8940
This theorem is referenced by:  en1eqsnbi  9276  1nsgtrivd  19054  gex1  19459  0cyg  19761  pgpfac1lem3a  19946  pgpfaclem3  19953  0ring  20303  en1top  22487  cnextfres1  23572  xrge0tsmseq  32242  sconnpi1  34261  rngoueqz  36856  isdmn3  36990
  Copyright terms: Public domain W3C validator