MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en1eqsn Structured version   Visualization version   GIF version

Theorem en1eqsn 9336
Description: A set with one element is a singleton. (Contributed by FL, 18-Aug-2008.) Avoid ax-pow 5383, ax-un 7770. (Revised by BTernaryTau, 4-Jan-2025.)
Assertion
Ref Expression
en1eqsn ((𝐴𝐵𝐵 ≈ 1o) → 𝐵 = {𝐴})

Proof of Theorem en1eqsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 en1 9086 . . 3 (𝐵 ≈ 1o ↔ ∃𝑥 𝐵 = {𝑥})
2 eleq2 2833 . . . . . . . 8 (𝐵 = {𝑥} → (𝐴𝐵𝐴 ∈ {𝑥}))
3 elsni 4665 . . . . . . . . 9 (𝐴 ∈ {𝑥} → 𝐴 = 𝑥)
43sneqd 4660 . . . . . . . 8 (𝐴 ∈ {𝑥} → {𝐴} = {𝑥})
52, 4biimtrdi 253 . . . . . . 7 (𝐵 = {𝑥} → (𝐴𝐵 → {𝐴} = {𝑥}))
65imp 406 . . . . . 6 ((𝐵 = {𝑥} ∧ 𝐴𝐵) → {𝐴} = {𝑥})
7 eqtr3 2766 . . . . . 6 ((𝐵 = {𝑥} ∧ {𝐴} = {𝑥}) → 𝐵 = {𝐴})
86, 7syldan 590 . . . . 5 ((𝐵 = {𝑥} ∧ 𝐴𝐵) → 𝐵 = {𝐴})
98ex 412 . . . 4 (𝐵 = {𝑥} → (𝐴𝐵𝐵 = {𝐴}))
109exlimiv 1929 . . 3 (∃𝑥 𝐵 = {𝑥} → (𝐴𝐵𝐵 = {𝐴}))
111, 10sylbi 217 . 2 (𝐵 ≈ 1o → (𝐴𝐵𝐵 = {𝐴}))
1211impcom 407 1 ((𝐴𝐵𝐵 ≈ 1o) → 𝐵 = {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  {csn 4648   class class class wbr 5166  1oc1o 8515  cen 9000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-1o 8522  df-en 9004
This theorem is referenced by:  en1eqsnbi  9338  1nsgtrivd  19214  gex1  19633  0cyg  19935  pgpfac1lem3a  20120  pgpfaclem3  20127  0ring  20552  en1top  23012  cnextfres1  24097  xrge0tsmseq  33043  sconnpi1  35207  rngoueqz  37900  isdmn3  38034
  Copyright terms: Public domain W3C validator