| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > en1eqsn | Structured version Visualization version GIF version | ||
| Description: A set with one element is a singleton. (Contributed by FL, 18-Aug-2008.) Avoid ax-pow 5323, ax-un 7714. (Revised by BTernaryTau, 4-Jan-2025.) |
| Ref | Expression |
|---|---|
| en1eqsn | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → 𝐵 = {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en1 8998 | . . 3 ⊢ (𝐵 ≈ 1o ↔ ∃𝑥 𝐵 = {𝑥}) | |
| 2 | eleq2 2818 | . . . . . . . 8 ⊢ (𝐵 = {𝑥} → (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ {𝑥})) | |
| 3 | elsni 4609 | . . . . . . . . 9 ⊢ (𝐴 ∈ {𝑥} → 𝐴 = 𝑥) | |
| 4 | 3 | sneqd 4604 | . . . . . . . 8 ⊢ (𝐴 ∈ {𝑥} → {𝐴} = {𝑥}) |
| 5 | 2, 4 | biimtrdi 253 | . . . . . . 7 ⊢ (𝐵 = {𝑥} → (𝐴 ∈ 𝐵 → {𝐴} = {𝑥})) |
| 6 | 5 | imp 406 | . . . . . 6 ⊢ ((𝐵 = {𝑥} ∧ 𝐴 ∈ 𝐵) → {𝐴} = {𝑥}) |
| 7 | eqtr3 2752 | . . . . . 6 ⊢ ((𝐵 = {𝑥} ∧ {𝐴} = {𝑥}) → 𝐵 = {𝐴}) | |
| 8 | 6, 7 | syldan 591 | . . . . 5 ⊢ ((𝐵 = {𝑥} ∧ 𝐴 ∈ 𝐵) → 𝐵 = {𝐴}) |
| 9 | 8 | ex 412 | . . . 4 ⊢ (𝐵 = {𝑥} → (𝐴 ∈ 𝐵 → 𝐵 = {𝐴})) |
| 10 | 9 | exlimiv 1930 | . . 3 ⊢ (∃𝑥 𝐵 = {𝑥} → (𝐴 ∈ 𝐵 → 𝐵 = {𝐴})) |
| 11 | 1, 10 | sylbi 217 | . 2 ⊢ (𝐵 ≈ 1o → (𝐴 ∈ 𝐵 → 𝐵 = {𝐴})) |
| 12 | 11 | impcom 407 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → 𝐵 = {𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {csn 4592 class class class wbr 5110 1oc1o 8430 ≈ cen 8918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-1o 8437 df-en 8922 |
| This theorem is referenced by: en1eqsnbi 9228 1nsgtrivd 19113 gex1 19528 0cyg 19830 pgpfac1lem3a 20015 pgpfaclem3 20022 0ring 20442 en1top 22878 cnextfres1 23962 xrge0tsmseq 33011 sconnpi1 35233 rngoueqz 37941 isdmn3 38075 |
| Copyright terms: Public domain | W3C validator |