![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > en1eqsnOLD | Structured version Visualization version GIF version |
Description: Obsolete version of en1eqsn 9336 as of 4-Jan-2025. (Contributed by FL, 18-Aug-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
en1eqsnOLD | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → 𝐵 = {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 8696 | . . . . . 6 ⊢ 1o ∈ ω | |
2 | ssid 4031 | . . . . . 6 ⊢ 1o ⊆ 1o | |
3 | ssnnfi 9235 | . . . . . 6 ⊢ ((1o ∈ ω ∧ 1o ⊆ 1o) → 1o ∈ Fin) | |
4 | 1, 2, 3 | mp2an 691 | . . . . 5 ⊢ 1o ∈ Fin |
5 | enfii 9252 | . . . . 5 ⊢ ((1o ∈ Fin ∧ 𝐵 ≈ 1o) → 𝐵 ∈ Fin) | |
6 | 4, 5 | mpan 689 | . . . 4 ⊢ (𝐵 ≈ 1o → 𝐵 ∈ Fin) |
7 | 6 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → 𝐵 ∈ Fin) |
8 | snssi 4833 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) | |
9 | 8 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → {𝐴} ⊆ 𝐵) |
10 | ensn1g 9084 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ≈ 1o) | |
11 | ensym 9063 | . . . 4 ⊢ (𝐵 ≈ 1o → 1o ≈ 𝐵) | |
12 | entr 9066 | . . . 4 ⊢ (({𝐴} ≈ 1o ∧ 1o ≈ 𝐵) → {𝐴} ≈ 𝐵) | |
13 | 10, 11, 12 | syl2an 595 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → {𝐴} ≈ 𝐵) |
14 | fisseneq 9320 | . . 3 ⊢ ((𝐵 ∈ Fin ∧ {𝐴} ⊆ 𝐵 ∧ {𝐴} ≈ 𝐵) → {𝐴} = 𝐵) | |
15 | 7, 9, 13, 14 | syl3anc 1371 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → {𝐴} = 𝐵) |
16 | 15 | eqcomd 2746 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → 𝐵 = {𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 {csn 4648 class class class wbr 5166 ωcom 7903 1oc1o 8515 ≈ cen 9000 Fincfn 9003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-om 7904 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |