![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > en1eqsnOLD | Structured version Visualization version GIF version |
Description: Obsolete version of en1eqsn 9295 as of 4-Jan-2025. (Contributed by FL, 18-Aug-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
en1eqsnOLD | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → 𝐵 = {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 8657 | . . . . . 6 ⊢ 1o ∈ ω | |
2 | ssid 3995 | . . . . . 6 ⊢ 1o ⊆ 1o | |
3 | ssnnfi 9190 | . . . . . 6 ⊢ ((1o ∈ ω ∧ 1o ⊆ 1o) → 1o ∈ Fin) | |
4 | 1, 2, 3 | mp2an 690 | . . . . 5 ⊢ 1o ∈ Fin |
5 | enfii 9210 | . . . . 5 ⊢ ((1o ∈ Fin ∧ 𝐵 ≈ 1o) → 𝐵 ∈ Fin) | |
6 | 4, 5 | mpan 688 | . . . 4 ⊢ (𝐵 ≈ 1o → 𝐵 ∈ Fin) |
7 | 6 | adantl 480 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → 𝐵 ∈ Fin) |
8 | snssi 4807 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) | |
9 | 8 | adantr 479 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → {𝐴} ⊆ 𝐵) |
10 | ensn1g 9040 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ≈ 1o) | |
11 | ensym 9020 | . . . 4 ⊢ (𝐵 ≈ 1o → 1o ≈ 𝐵) | |
12 | entr 9023 | . . . 4 ⊢ (({𝐴} ≈ 1o ∧ 1o ≈ 𝐵) → {𝐴} ≈ 𝐵) | |
13 | 10, 11, 12 | syl2an 594 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → {𝐴} ≈ 𝐵) |
14 | fisseneq 9278 | . . 3 ⊢ ((𝐵 ∈ Fin ∧ {𝐴} ⊆ 𝐵 ∧ {𝐴} ≈ 𝐵) → {𝐴} = 𝐵) | |
15 | 7, 9, 13, 14 | syl3anc 1368 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → {𝐴} = 𝐵) |
16 | 15 | eqcomd 2731 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → 𝐵 = {𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ⊆ wss 3940 {csn 4624 class class class wbr 5143 ωcom 7867 1oc1o 8476 ≈ cen 8957 Fincfn 8960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-om 7868 df-1o 8483 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |