Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > en1eqsnOLD | Structured version Visualization version GIF version |
Description: Obsolete version of en1eqsn 9095 as of 4-Jan-2025. (Contributed by FL, 18-Aug-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
en1eqsnOLD | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → 𝐵 = {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 8501 | . . . . . 6 ⊢ 1o ∈ ω | |
2 | ssid 3948 | . . . . . 6 ⊢ 1o ⊆ 1o | |
3 | ssnnfi 8990 | . . . . . 6 ⊢ ((1o ∈ ω ∧ 1o ⊆ 1o) → 1o ∈ Fin) | |
4 | 1, 2, 3 | mp2an 690 | . . . . 5 ⊢ 1o ∈ Fin |
5 | enfii 9010 | . . . . 5 ⊢ ((1o ∈ Fin ∧ 𝐵 ≈ 1o) → 𝐵 ∈ Fin) | |
6 | 4, 5 | mpan 688 | . . . 4 ⊢ (𝐵 ≈ 1o → 𝐵 ∈ Fin) |
7 | 6 | adantl 483 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → 𝐵 ∈ Fin) |
8 | snssi 4747 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) | |
9 | 8 | adantr 482 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → {𝐴} ⊆ 𝐵) |
10 | ensn1g 8844 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ≈ 1o) | |
11 | ensym 8824 | . . . 4 ⊢ (𝐵 ≈ 1o → 1o ≈ 𝐵) | |
12 | entr 8827 | . . . 4 ⊢ (({𝐴} ≈ 1o ∧ 1o ≈ 𝐵) → {𝐴} ≈ 𝐵) | |
13 | 10, 11, 12 | syl2an 597 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → {𝐴} ≈ 𝐵) |
14 | fisseneq 9078 | . . 3 ⊢ ((𝐵 ∈ Fin ∧ {𝐴} ⊆ 𝐵 ∧ {𝐴} ≈ 𝐵) → {𝐴} = 𝐵) | |
15 | 7, 9, 13, 14 | syl3anc 1371 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → {𝐴} = 𝐵) |
16 | 15 | eqcomd 2742 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → 𝐵 = {𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ⊆ wss 3892 {csn 4565 class class class wbr 5081 ωcom 7744 1oc1o 8321 ≈ cen 8761 Fincfn 8764 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3332 df-rab 3333 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-om 7745 df-1o 8328 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |