Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngosn4 Structured version   Visualization version   GIF version

Theorem rngosn4 37919
Description: Obsolete as of 25-Jan-2020. Use rngen1zr 20686 instead. The only unital ring with one element is the zero ring. (Contributed by FL, 14-Feb-2010.) (Revised by Mario Carneiro, 30-Apr-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
on1el3.1 𝐺 = (1st𝑅)
on1el3.2 𝑋 = ran 𝐺
Assertion
Ref Expression
rngosn4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑋 ≈ 1o𝑅 = ⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩))

Proof of Theorem rngosn4
StepHypRef Expression
1 en1eqsnbi 9221 . . 3 (𝐴𝑋 → (𝑋 ≈ 1o𝑋 = {𝐴}))
21adantl 481 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑋 ≈ 1o𝑋 = {𝐴}))
3 on1el3.1 . . 3 𝐺 = (1st𝑅)
4 on1el3.2 . . 3 𝑋 = ran 𝐺
53, 4rngosn3 37918 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑋 = {𝐴} ↔ 𝑅 = ⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩))
62, 5bitrd 279 1 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑋 ≈ 1o𝑅 = ⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {csn 4589  cop 4595   class class class wbr 5107  ran crn 5639  cfv 6511  1st c1st 7966  1oc1o 8427  cen 8915  RingOpscrngo 37888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-1st 7968  df-2nd 7969  df-1o 8434  df-en 8919  df-grpo 30422  df-ablo 30474  df-rngo 37889
This theorem is referenced by:  rngosn6  37920
  Copyright terms: Public domain W3C validator