| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngosn4 | Structured version Visualization version GIF version | ||
| Description: Obsolete as of 25-Jan-2020. Use rngen1zr 20690 instead. The only unital ring with one element is the zero ring. (Contributed by FL, 14-Feb-2010.) (Revised by Mario Carneiro, 30-Apr-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| on1el3.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| on1el3.2 | ⊢ 𝑋 = ran 𝐺 |
| Ref | Expression |
|---|---|
| rngosn4 | ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑋 ≈ 1o ↔ 𝑅 = 〈{〈〈𝐴, 𝐴〉, 𝐴〉}, {〈〈𝐴, 𝐴〉, 𝐴〉}〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en1eqsnbi 9160 | . . 3 ⊢ (𝐴 ∈ 𝑋 → (𝑋 ≈ 1o ↔ 𝑋 = {𝐴})) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑋 ≈ 1o ↔ 𝑋 = {𝐴})) |
| 3 | on1el3.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
| 4 | on1el3.2 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
| 5 | 3, 4 | rngosn3 37963 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑋 = {𝐴} ↔ 𝑅 = 〈{〈〈𝐴, 𝐴〉, 𝐴〉}, {〈〈𝐴, 𝐴〉, 𝐴〉}〉)) |
| 6 | 2, 5 | bitrd 279 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑋 ≈ 1o ↔ 𝑅 = 〈{〈〈𝐴, 𝐴〉, 𝐴〉}, {〈〈𝐴, 𝐴〉, 𝐴〉}〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {csn 4576 〈cop 4582 class class class wbr 5091 ran crn 5617 ‘cfv 6481 1st c1st 7919 1oc1o 8378 ≈ cen 8866 RingOpscrngo 37933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-1st 7921 df-2nd 7922 df-1o 8385 df-en 8870 df-grpo 30468 df-ablo 30520 df-rngo 37934 |
| This theorem is referenced by: rngosn6 37965 |
| Copyright terms: Public domain | W3C validator |