Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngosn4 Structured version   Visualization version   GIF version

Theorem rngosn4 37895
Description: Obsolete as of 25-Jan-2020. Use rngen1zr 20735 instead. The only unital ring with one element is the zero ring. (Contributed by FL, 14-Feb-2010.) (Revised by Mario Carneiro, 30-Apr-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
on1el3.1 𝐺 = (1st𝑅)
on1el3.2 𝑋 = ran 𝐺
Assertion
Ref Expression
rngosn4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑋 ≈ 1o𝑅 = ⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩))

Proof of Theorem rngosn4
StepHypRef Expression
1 en1eqsnbi 9280 . . 3 (𝐴𝑋 → (𝑋 ≈ 1o𝑋 = {𝐴}))
21adantl 481 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑋 ≈ 1o𝑋 = {𝐴}))
3 on1el3.1 . . 3 𝐺 = (1st𝑅)
4 on1el3.2 . . 3 𝑋 = ran 𝐺
53, 4rngosn3 37894 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑋 = {𝐴} ↔ 𝑅 = ⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩))
62, 5bitrd 279 1 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑋 ≈ 1o𝑅 = ⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  {csn 4601  cop 4607   class class class wbr 5119  ran crn 5655  cfv 6530  1st c1st 7984  1oc1o 8471  cen 8954  RingOpscrngo 37864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-1st 7986  df-2nd 7987  df-1o 8478  df-en 8958  df-grpo 30420  df-ablo 30472  df-rngo 37865
This theorem is referenced by:  rngosn6  37896
  Copyright terms: Public domain W3C validator