![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngosn4 | Structured version Visualization version GIF version |
Description: Obsolete as of 25-Jan-2020. Use rngen1zr 20794 instead. The only unital ring with one element is the zero ring. (Contributed by FL, 14-Feb-2010.) (Revised by Mario Carneiro, 30-Apr-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
on1el3.1 | ⊢ 𝐺 = (1st ‘𝑅) |
on1el3.2 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
rngosn4 | ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑋 ≈ 1o ↔ 𝑅 = 〈{〈〈𝐴, 𝐴〉, 𝐴〉}, {〈〈𝐴, 𝐴〉, 𝐴〉}〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en1eqsnbi 9307 | . . 3 ⊢ (𝐴 ∈ 𝑋 → (𝑋 ≈ 1o ↔ 𝑋 = {𝐴})) | |
2 | 1 | adantl 481 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑋 ≈ 1o ↔ 𝑋 = {𝐴})) |
3 | on1el3.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
4 | on1el3.2 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
5 | 3, 4 | rngosn3 37910 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑋 = {𝐴} ↔ 𝑅 = 〈{〈〈𝐴, 𝐴〉, 𝐴〉}, {〈〈𝐴, 𝐴〉, 𝐴〉}〉)) |
6 | 2, 5 | bitrd 279 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑋 ≈ 1o ↔ 𝑅 = 〈{〈〈𝐴, 𝐴〉, 𝐴〉}, {〈〈𝐴, 𝐴〉, 𝐴〉}〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 {csn 4630 〈cop 4636 class class class wbr 5147 ran crn 5689 ‘cfv 6562 1st c1st 8010 1oc1o 8497 ≈ cen 8980 RingOpscrngo 37880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-1st 8012 df-2nd 8013 df-1o 8504 df-en 8984 df-grpo 30521 df-ablo 30573 df-rngo 37881 |
This theorem is referenced by: rngosn6 37912 |
Copyright terms: Public domain | W3C validator |