| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngosn4 | Structured version Visualization version GIF version | ||
| Description: Obsolete as of 25-Jan-2020. Use rngen1zr 20694 instead. The only unital ring with one element is the zero ring. (Contributed by FL, 14-Feb-2010.) (Revised by Mario Carneiro, 30-Apr-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| on1el3.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| on1el3.2 | ⊢ 𝑋 = ran 𝐺 |
| Ref | Expression |
|---|---|
| rngosn4 | ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑋 ≈ 1o ↔ 𝑅 = 〈{〈〈𝐴, 𝐴〉, 𝐴〉}, {〈〈𝐴, 𝐴〉, 𝐴〉}〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en1eqsnbi 9167 | . . 3 ⊢ (𝐴 ∈ 𝑋 → (𝑋 ≈ 1o ↔ 𝑋 = {𝐴})) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑋 ≈ 1o ↔ 𝑋 = {𝐴})) |
| 3 | on1el3.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
| 4 | on1el3.2 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
| 5 | 3, 4 | rngosn3 37984 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑋 = {𝐴} ↔ 𝑅 = 〈{〈〈𝐴, 𝐴〉, 𝐴〉}, {〈〈𝐴, 𝐴〉, 𝐴〉}〉)) |
| 6 | 2, 5 | bitrd 279 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑋 ≈ 1o ↔ 𝑅 = 〈{〈〈𝐴, 𝐴〉, 𝐴〉}, {〈〈𝐴, 𝐴〉, 𝐴〉}〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {csn 4575 〈cop 4581 class class class wbr 5093 ran crn 5620 ‘cfv 6486 1st c1st 7925 1oc1o 8384 ≈ cen 8872 RingOpscrngo 37954 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-1st 7927 df-2nd 7928 df-1o 8391 df-en 8876 df-grpo 30475 df-ablo 30527 df-rngo 37955 |
| This theorem is referenced by: rngosn6 37986 |
| Copyright terms: Public domain | W3C validator |