MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspmlem Structured version   Visualization version   GIF version

Theorem sspmlem 30713
Description: Lemma for sspm 30715 and others. (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspmlem.y 𝑌 = (BaseSet‘𝑊)
sspmlem.h 𝐻 = (SubSp‘𝑈)
sspmlem.1 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦))
sspmlem.2 (𝑊 ∈ NrmCVec → 𝐹:(𝑌 × 𝑌)⟶𝑅)
sspmlem.3 (𝑈 ∈ NrmCVec → 𝐺:((BaseSet‘𝑈) × (BaseSet‘𝑈))⟶𝑆)
Assertion
Ref Expression
sspmlem ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝐹 = (𝐺 ↾ (𝑌 × 𝑌)))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝑈,𝑦   𝑥,𝑊,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)

Proof of Theorem sspmlem
StepHypRef Expression
1 sspmlem.1 . . . . 5 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦))
2 ovres 7573 . . . . . 6 ((𝑥𝑌𝑦𝑌) → (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦) = (𝑥𝐺𝑦))
32adantl 481 . . . . 5 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦) = (𝑥𝐺𝑦))
41, 3eqtr4d 2773 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦))
54ralrimivva 3187 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → ∀𝑥𝑌𝑦𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦))
6 eqid 2735 . . 3 (𝑌 × 𝑌) = (𝑌 × 𝑌)
75, 6jctil 519 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → ((𝑌 × 𝑌) = (𝑌 × 𝑌) ∧ ∀𝑥𝑌𝑦𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦)))
8 sspmlem.h . . . . 5 𝐻 = (SubSp‘𝑈)
98sspnv 30707 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑊 ∈ NrmCVec)
10 sspmlem.2 . . . 4 (𝑊 ∈ NrmCVec → 𝐹:(𝑌 × 𝑌)⟶𝑅)
11 ffn 6706 . . . 4 (𝐹:(𝑌 × 𝑌)⟶𝑅𝐹 Fn (𝑌 × 𝑌))
129, 10, 113syl 18 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝐹 Fn (𝑌 × 𝑌))
13 sspmlem.3 . . . . . 6 (𝑈 ∈ NrmCVec → 𝐺:((BaseSet‘𝑈) × (BaseSet‘𝑈))⟶𝑆)
1413ffnd 6707 . . . . 5 (𝑈 ∈ NrmCVec → 𝐺 Fn ((BaseSet‘𝑈) × (BaseSet‘𝑈)))
1514adantr 480 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝐺 Fn ((BaseSet‘𝑈) × (BaseSet‘𝑈)))
16 eqid 2735 . . . . . 6 (BaseSet‘𝑈) = (BaseSet‘𝑈)
17 sspmlem.y . . . . . 6 𝑌 = (BaseSet‘𝑊)
1816, 17, 8sspba 30708 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑌 ⊆ (BaseSet‘𝑈))
19 xpss12 5669 . . . . 5 ((𝑌 ⊆ (BaseSet‘𝑈) ∧ 𝑌 ⊆ (BaseSet‘𝑈)) → (𝑌 × 𝑌) ⊆ ((BaseSet‘𝑈) × (BaseSet‘𝑈)))
2018, 18, 19syl2anc 584 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝑌 × 𝑌) ⊆ ((BaseSet‘𝑈) × (BaseSet‘𝑈)))
21 fnssres 6661 . . . 4 ((𝐺 Fn ((BaseSet‘𝑈) × (BaseSet‘𝑈)) ∧ (𝑌 × 𝑌) ⊆ ((BaseSet‘𝑈) × (BaseSet‘𝑈))) → (𝐺 ↾ (𝑌 × 𝑌)) Fn (𝑌 × 𝑌))
2215, 20, 21syl2anc 584 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐺 ↾ (𝑌 × 𝑌)) Fn (𝑌 × 𝑌))
23 eqfnov 7536 . . 3 ((𝐹 Fn (𝑌 × 𝑌) ∧ (𝐺 ↾ (𝑌 × 𝑌)) Fn (𝑌 × 𝑌)) → (𝐹 = (𝐺 ↾ (𝑌 × 𝑌)) ↔ ((𝑌 × 𝑌) = (𝑌 × 𝑌) ∧ ∀𝑥𝑌𝑦𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦))))
2412, 22, 23syl2anc 584 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐹 = (𝐺 ↾ (𝑌 × 𝑌)) ↔ ((𝑌 × 𝑌) = (𝑌 × 𝑌) ∧ ∀𝑥𝑌𝑦𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦))))
257, 24mpbird 257 1 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝐹 = (𝐺 ↾ (𝑌 × 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wss 3926   × cxp 5652  cres 5656   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  NrmCVeccnv 30565  BaseSetcba 30567  SubSpcss 30702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fo 6537  df-fv 6539  df-ov 7408  df-oprab 7409  df-1st 7988  df-2nd 7989  df-vc 30540  df-nv 30573  df-va 30576  df-ba 30577  df-sm 30578  df-nmcv 30581  df-ssp 30703
This theorem is referenced by:  sspm  30715  sspims  30720
  Copyright terms: Public domain W3C validator