| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1nqenq | Structured version Visualization version GIF version | ||
| Description: The equivalence class of ratio 1. (Contributed by NM, 4-Mar-1996.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 1nqenq | ⊢ (𝐴 ∈ N → 1Q ~Q 〈𝐴, 𝐴〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enqer 10935 | . . 3 ⊢ ~Q Er (N × N) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝐴 ∈ N → ~Q Er (N × N)) |
| 3 | mulidpi 10900 | . . . 4 ⊢ (𝐴 ∈ N → (𝐴 ·N 1o) = 𝐴) | |
| 4 | 3, 3 | opeq12d 4857 | . . 3 ⊢ (𝐴 ∈ N → 〈(𝐴 ·N 1o), (𝐴 ·N 1o)〉 = 〈𝐴, 𝐴〉) |
| 5 | 1pi 10897 | . . . . 5 ⊢ 1o ∈ N | |
| 6 | mulcanenq 10974 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 1o ∈ N ∧ 1o ∈ N) → 〈(𝐴 ·N 1o), (𝐴 ·N 1o)〉 ~Q 〈1o, 1o〉) | |
| 7 | 5, 5, 6 | mp3an23 1455 | . . . 4 ⊢ (𝐴 ∈ N → 〈(𝐴 ·N 1o), (𝐴 ·N 1o)〉 ~Q 〈1o, 1o〉) |
| 8 | df-1nq 10930 | . . . 4 ⊢ 1Q = 〈1o, 1o〉 | |
| 9 | 7, 8 | breqtrrdi 5161 | . . 3 ⊢ (𝐴 ∈ N → 〈(𝐴 ·N 1o), (𝐴 ·N 1o)〉 ~Q 1Q) |
| 10 | 4, 9 | eqbrtrrd 5143 | . 2 ⊢ (𝐴 ∈ N → 〈𝐴, 𝐴〉 ~Q 1Q) |
| 11 | 2, 10 | ersym 8731 | 1 ⊢ (𝐴 ∈ N → 1Q ~Q 〈𝐴, 𝐴〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 〈cop 4607 class class class wbr 5119 × cxp 5652 (class class class)co 7405 1oc1o 8473 Er wer 8716 Ncnpi 10858 ·N cmi 10860 ~Q ceq 10865 1Qc1q 10867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-omul 8485 df-er 8719 df-ni 10886 df-mi 10888 df-enq 10925 df-1nq 10930 |
| This theorem is referenced by: recmulnq 10978 |
| Copyright terms: Public domain | W3C validator |