MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1nqenq Structured version   Visualization version   GIF version

Theorem 1nqenq 10702
Description: The equivalence class of ratio 1. (Contributed by NM, 4-Mar-1996.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
1nqenq (𝐴N → 1Q ~Q𝐴, 𝐴⟩)

Proof of Theorem 1nqenq
StepHypRef Expression
1 enqer 10661 . . 3 ~Q Er (N × N)
21a1i 11 . 2 (𝐴N → ~Q Er (N × N))
3 mulidpi 10626 . . . 4 (𝐴N → (𝐴 ·N 1o) = 𝐴)
43, 3opeq12d 4817 . . 3 (𝐴N → ⟨(𝐴 ·N 1o), (𝐴 ·N 1o)⟩ = ⟨𝐴, 𝐴⟩)
5 1pi 10623 . . . . 5 1oN
6 mulcanenq 10700 . . . . 5 ((𝐴N ∧ 1oN ∧ 1oN) → ⟨(𝐴 ·N 1o), (𝐴 ·N 1o)⟩ ~Q ⟨1o, 1o⟩)
75, 5, 6mp3an23 1451 . . . 4 (𝐴N → ⟨(𝐴 ·N 1o), (𝐴 ·N 1o)⟩ ~Q ⟨1o, 1o⟩)
8 df-1nq 10656 . . . 4 1Q = ⟨1o, 1o
97, 8breqtrrdi 5120 . . 3 (𝐴N → ⟨(𝐴 ·N 1o), (𝐴 ·N 1o)⟩ ~Q 1Q)
104, 9eqbrtrrd 5102 . 2 (𝐴N → ⟨𝐴, 𝐴⟩ ~Q 1Q)
112, 10ersym 8484 1 (𝐴N → 1Q ~Q𝐴, 𝐴⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cop 4572   class class class wbr 5078   × cxp 5586  (class class class)co 7268  1oc1o 8274   Er wer 8469  Ncnpi 10584   ·N cmi 10586   ~Q ceq 10591  1Qc1q 10593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-oadd 8285  df-omul 8286  df-er 8472  df-ni 10612  df-mi 10614  df-enq 10651  df-1nq 10656
This theorem is referenced by:  recmulnq  10704
  Copyright terms: Public domain W3C validator