Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1nqenq | Structured version Visualization version GIF version |
Description: The equivalence class of ratio 1. (Contributed by NM, 4-Mar-1996.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
1nqenq | ⊢ (𝐴 ∈ N → 1Q ~Q 〈𝐴, 𝐴〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enqer 10723 | . . 3 ⊢ ~Q Er (N × N) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝐴 ∈ N → ~Q Er (N × N)) |
3 | mulidpi 10688 | . . . 4 ⊢ (𝐴 ∈ N → (𝐴 ·N 1o) = 𝐴) | |
4 | 3, 3 | opeq12d 4817 | . . 3 ⊢ (𝐴 ∈ N → 〈(𝐴 ·N 1o), (𝐴 ·N 1o)〉 = 〈𝐴, 𝐴〉) |
5 | 1pi 10685 | . . . . 5 ⊢ 1o ∈ N | |
6 | mulcanenq 10762 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 1o ∈ N ∧ 1o ∈ N) → 〈(𝐴 ·N 1o), (𝐴 ·N 1o)〉 ~Q 〈1o, 1o〉) | |
7 | 5, 5, 6 | mp3an23 1453 | . . . 4 ⊢ (𝐴 ∈ N → 〈(𝐴 ·N 1o), (𝐴 ·N 1o)〉 ~Q 〈1o, 1o〉) |
8 | df-1nq 10718 | . . . 4 ⊢ 1Q = 〈1o, 1o〉 | |
9 | 7, 8 | breqtrrdi 5123 | . . 3 ⊢ (𝐴 ∈ N → 〈(𝐴 ·N 1o), (𝐴 ·N 1o)〉 ~Q 1Q) |
10 | 4, 9 | eqbrtrrd 5105 | . 2 ⊢ (𝐴 ∈ N → 〈𝐴, 𝐴〉 ~Q 1Q) |
11 | 2, 10 | ersym 8541 | 1 ⊢ (𝐴 ∈ N → 1Q ~Q 〈𝐴, 𝐴〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 〈cop 4571 class class class wbr 5081 × cxp 5598 (class class class)co 7307 1oc1o 8321 Er wer 8526 Ncnpi 10646 ·N cmi 10648 ~Q ceq 10653 1Qc1q 10655 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-oadd 8332 df-omul 8333 df-er 8529 df-ni 10674 df-mi 10676 df-enq 10713 df-1nq 10718 |
This theorem is referenced by: recmulnq 10766 |
Copyright terms: Public domain | W3C validator |