MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1nqenq Structured version   Visualization version   GIF version

Theorem 1nqenq 10180
Description: The equivalence class of ratio 1. (Contributed by NM, 4-Mar-1996.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
1nqenq (𝐴N → 1Q ~Q𝐴, 𝐴⟩)

Proof of Theorem 1nqenq
StepHypRef Expression
1 enqer 10139 . . 3 ~Q Er (N × N)
21a1i 11 . 2 (𝐴N → ~Q Er (N × N))
3 mulidpi 10104 . . . 4 (𝐴N → (𝐴 ·N 1o) = 𝐴)
43, 3opeq12d 4681 . . 3 (𝐴N → ⟨(𝐴 ·N 1o), (𝐴 ·N 1o)⟩ = ⟨𝐴, 𝐴⟩)
5 1pi 10101 . . . . 5 1oN
6 mulcanenq 10178 . . . . 5 ((𝐴N ∧ 1oN ∧ 1oN) → ⟨(𝐴 ·N 1o), (𝐴 ·N 1o)⟩ ~Q ⟨1o, 1o⟩)
75, 5, 6mp3an23 1433 . . . 4 (𝐴N → ⟨(𝐴 ·N 1o), (𝐴 ·N 1o)⟩ ~Q ⟨1o, 1o⟩)
8 df-1nq 10134 . . . 4 1Q = ⟨1o, 1o
97, 8syl6breqr 4967 . . 3 (𝐴N → ⟨(𝐴 ·N 1o), (𝐴 ·N 1o)⟩ ~Q 1Q)
104, 9eqbrtrrd 4949 . 2 (𝐴N → ⟨𝐴, 𝐴⟩ ~Q 1Q)
112, 10ersym 8099 1 (𝐴N → 1Q ~Q𝐴, 𝐴⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2051  cop 4441   class class class wbr 4925   × cxp 5401  (class class class)co 6974  1oc1o 7896   Er wer 8084  Ncnpi 10062   ·N cmi 10064   ~Q ceq 10069  1Qc1q 10071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-ral 3086  df-rex 3087  df-reu 3088  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-pss 3838  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-1st 7499  df-2nd 7500  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-1o 7903  df-oadd 7907  df-omul 7908  df-er 8087  df-ni 10090  df-mi 10092  df-enq 10129  df-1nq 10134
This theorem is referenced by:  recmulnq  10182
  Copyright terms: Public domain W3C validator