Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1nqenq | Structured version Visualization version GIF version |
Description: The equivalence class of ratio 1. (Contributed by NM, 4-Mar-1996.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
1nqenq | ⊢ (𝐴 ∈ N → 1Q ~Q 〈𝐴, 𝐴〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enqer 10661 | . . 3 ⊢ ~Q Er (N × N) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝐴 ∈ N → ~Q Er (N × N)) |
3 | mulidpi 10626 | . . . 4 ⊢ (𝐴 ∈ N → (𝐴 ·N 1o) = 𝐴) | |
4 | 3, 3 | opeq12d 4817 | . . 3 ⊢ (𝐴 ∈ N → 〈(𝐴 ·N 1o), (𝐴 ·N 1o)〉 = 〈𝐴, 𝐴〉) |
5 | 1pi 10623 | . . . . 5 ⊢ 1o ∈ N | |
6 | mulcanenq 10700 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 1o ∈ N ∧ 1o ∈ N) → 〈(𝐴 ·N 1o), (𝐴 ·N 1o)〉 ~Q 〈1o, 1o〉) | |
7 | 5, 5, 6 | mp3an23 1451 | . . . 4 ⊢ (𝐴 ∈ N → 〈(𝐴 ·N 1o), (𝐴 ·N 1o)〉 ~Q 〈1o, 1o〉) |
8 | df-1nq 10656 | . . . 4 ⊢ 1Q = 〈1o, 1o〉 | |
9 | 7, 8 | breqtrrdi 5120 | . . 3 ⊢ (𝐴 ∈ N → 〈(𝐴 ·N 1o), (𝐴 ·N 1o)〉 ~Q 1Q) |
10 | 4, 9 | eqbrtrrd 5102 | . 2 ⊢ (𝐴 ∈ N → 〈𝐴, 𝐴〉 ~Q 1Q) |
11 | 2, 10 | ersym 8484 | 1 ⊢ (𝐴 ∈ N → 1Q ~Q 〈𝐴, 𝐴〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2109 〈cop 4572 class class class wbr 5078 × cxp 5586 (class class class)co 7268 1oc1o 8274 Er wer 8469 Ncnpi 10584 ·N cmi 10586 ~Q ceq 10591 1Qc1q 10593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-oadd 8285 df-omul 8286 df-er 8472 df-ni 10612 df-mi 10614 df-enq 10651 df-1nq 10656 |
This theorem is referenced by: recmulnq 10704 |
Copyright terms: Public domain | W3C validator |