MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1nqenq Structured version   Visualization version   GIF version

Theorem 1nqenq 11005
Description: The equivalence class of ratio 1. (Contributed by NM, 4-Mar-1996.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
1nqenq (𝐴N → 1Q ~Q𝐴, 𝐴⟩)

Proof of Theorem 1nqenq
StepHypRef Expression
1 enqer 10964 . . 3 ~Q Er (N × N)
21a1i 11 . 2 (𝐴N → ~Q Er (N × N))
3 mulidpi 10929 . . . 4 (𝐴N → (𝐴 ·N 1o) = 𝐴)
43, 3opeq12d 4887 . . 3 (𝐴N → ⟨(𝐴 ·N 1o), (𝐴 ·N 1o)⟩ = ⟨𝐴, 𝐴⟩)
5 1pi 10926 . . . . 5 1oN
6 mulcanenq 11003 . . . . 5 ((𝐴N ∧ 1oN ∧ 1oN) → ⟨(𝐴 ·N 1o), (𝐴 ·N 1o)⟩ ~Q ⟨1o, 1o⟩)
75, 5, 6mp3an23 1450 . . . 4 (𝐴N → ⟨(𝐴 ·N 1o), (𝐴 ·N 1o)⟩ ~Q ⟨1o, 1o⟩)
8 df-1nq 10959 . . . 4 1Q = ⟨1o, 1o
97, 8breqtrrdi 5195 . . 3 (𝐴N → ⟨(𝐴 ·N 1o), (𝐴 ·N 1o)⟩ ~Q 1Q)
104, 9eqbrtrrd 5177 . 2 (𝐴N → ⟨𝐴, 𝐴⟩ ~Q 1Q)
112, 10ersym 8746 1 (𝐴N → 1Q ~Q𝐴, 𝐴⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2099  cop 4639   class class class wbr 5153   × cxp 5680  (class class class)co 7424  1oc1o 8489   Er wer 8731  Ncnpi 10887   ·N cmi 10889   ~Q ceq 10894  1Qc1q 10896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-oadd 8500  df-omul 8501  df-er 8734  df-ni 10915  df-mi 10917  df-enq 10954  df-1nq 10959
This theorem is referenced by:  recmulnq  11007
  Copyright terms: Public domain W3C validator