![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnmsgn0g | Structured version Visualization version GIF version |
Description: The neutral element of the sign subgroup of the complex numbers. (Contributed by Thierry Arnoux, 1-Nov-2023.) |
Ref | Expression |
---|---|
cnmsgn0g.1 | ⊢ 𝑈 = ((mulGrp‘ℂfld) ↾s {1, -1}) |
Ref | Expression |
---|---|
cnmsgn0g | ⊢ 1 = (0g‘𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnring 21376 | . . 3 ⊢ ℂfld ∈ Ring | |
2 | eqid 2726 | . . . 4 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
3 | 2 | ringmgp 20216 | . . 3 ⊢ (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ (mulGrp‘ℂfld) ∈ Mnd |
5 | 1ex 11249 | . . 3 ⊢ 1 ∈ V | |
6 | 5 | prid1 4762 | . 2 ⊢ 1 ∈ {1, -1} |
7 | ax-1cn 11205 | . . 3 ⊢ 1 ∈ ℂ | |
8 | neg1cn 12370 | . . 3 ⊢ -1 ∈ ℂ | |
9 | prssi 4821 | . . 3 ⊢ ((1 ∈ ℂ ∧ -1 ∈ ℂ) → {1, -1} ⊆ ℂ) | |
10 | 7, 8, 9 | mp2an 690 | . 2 ⊢ {1, -1} ⊆ ℂ |
11 | cnmsgn0g.1 | . . 3 ⊢ 𝑈 = ((mulGrp‘ℂfld) ↾s {1, -1}) | |
12 | cnfldbas 21341 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
13 | 2, 12 | mgpbas 20117 | . . 3 ⊢ ℂ = (Base‘(mulGrp‘ℂfld)) |
14 | cnfld1 21379 | . . . 4 ⊢ 1 = (1r‘ℂfld) | |
15 | 2, 14 | ringidval 20160 | . . 3 ⊢ 1 = (0g‘(mulGrp‘ℂfld)) |
16 | 11, 13, 15 | ress0g 18748 | . 2 ⊢ (((mulGrp‘ℂfld) ∈ Mnd ∧ 1 ∈ {1, -1} ∧ {1, -1} ⊆ ℂ) → 1 = (0g‘𝑈)) |
17 | 4, 6, 10, 16 | mp3an 1458 | 1 ⊢ 1 = (0g‘𝑈) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 ⊆ wss 3947 {cpr 4626 ‘cfv 6544 (class class class)co 7414 ℂcc 11145 1c1 11148 -cneg 11484 ↾s cress 17235 0gc0g 17447 Mndcmnd 18720 mulGrpcmgp 20111 Ringcrg 20210 ℂfldccnfld 21337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7736 ax-cnex 11203 ax-resscn 11204 ax-1cn 11205 ax-icn 11206 ax-addcl 11207 ax-addrcl 11208 ax-mulcl 11209 ax-mulrcl 11210 ax-mulcom 11211 ax-addass 11212 ax-mulass 11213 ax-distr 11214 ax-i2m1 11215 ax-1ne0 11216 ax-1rid 11217 ax-rnegex 11218 ax-rrecex 11219 ax-cnre 11220 ax-pre-lttri 11221 ax-pre-lttrn 11222 ax-pre-ltadd 11223 ax-pre-mulgt0 11224 ax-addf 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3365 df-reu 3366 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4324 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4907 df-iun 4996 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6303 df-ord 6369 df-on 6370 df-lim 6371 df-suc 6372 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11289 df-mnf 11290 df-xr 11291 df-ltxr 11292 df-le 11293 df-sub 11485 df-neg 11486 df-nn 12257 df-2 12319 df-3 12320 df-4 12321 df-5 12322 df-6 12323 df-7 12324 df-8 12325 df-9 12326 df-n0 12517 df-z 12603 df-dec 12722 df-uz 12867 df-fz 13531 df-struct 17142 df-sets 17159 df-slot 17177 df-ndx 17189 df-base 17207 df-ress 17236 df-plusg 17272 df-mulr 17273 df-starv 17274 df-tset 17278 df-ple 17279 df-ds 17281 df-unif 17282 df-0g 17449 df-mgm 18626 df-sgrp 18705 df-mnd 18721 df-grp 18924 df-cmn 19774 df-mgp 20112 df-ur 20159 df-ring 20212 df-cring 20213 df-cnfld 21338 |
This theorem is referenced by: evpmsubg 33027 |
Copyright terms: Public domain | W3C validator |