MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax5seglem5 Structured version   Visualization version   GIF version

Theorem ax5seglem5 28966
Description: Lemma for ax5seg 28971. If 𝐵 is between 𝐴 and 𝐶, and 𝐴 is distinct from 𝐵, then 𝐴 is distinct from 𝐶. (Contributed by Scott Fenton, 11-Jun-2013.)
Assertion
Ref Expression
ax5seglem5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴𝐵𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2) ≠ 0)
Distinct variable groups:   𝐴,𝑖,𝑗   𝐵,𝑖,𝑗   𝐶,𝑖,𝑗   𝑇,𝑖   𝑖,𝑁,𝑗
Allowed substitution hint:   𝑇(𝑗)

Proof of Theorem ax5seglem5
StepHypRef Expression
1 fveq1 6919 . . . . . . . . . . . . . . 15 (𝐴 = 𝐶 → (𝐴𝑖) = (𝐶𝑖))
21oveq2d 7464 . . . . . . . . . . . . . 14 (𝐴 = 𝐶 → (𝑇 · (𝐴𝑖)) = (𝑇 · (𝐶𝑖)))
32oveq2d 7464 . . . . . . . . . . . . 13 (𝐴 = 𝐶 → (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐴𝑖))) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))
43eqeq2d 2751 . . . . . . . . . . . 12 (𝐴 = 𝐶 → ((𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐴𝑖))) ↔ (𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖)))))
54ralbidv 3184 . . . . . . . . . . 11 (𝐴 = 𝐶 → (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐴𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖)))))
65biimparc 479 . . . . . . . . . 10 ((∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ 𝐴 = 𝐶) → ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐴𝑖))))
7 simplr1 1215 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑇 ∈ (0[,]1)) → 𝐴 ∈ (𝔼‘𝑁))
8 simplr2 1216 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑇 ∈ (0[,]1)) → 𝐵 ∈ (𝔼‘𝑁))
9 eqeefv 28936 . . . . . . . . . . . 12 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
107, 8, 9syl2anc 583 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑇 ∈ (0[,]1)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
11 fveecn 28935 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
127, 11sylan 579 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑇 ∈ (0[,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
13 elicc01 13526 . . . . . . . . . . . . . . . . 17 (𝑇 ∈ (0[,]1) ↔ (𝑇 ∈ ℝ ∧ 0 ≤ 𝑇𝑇 ≤ 1))
1413simp1bi 1145 . . . . . . . . . . . . . . . 16 (𝑇 ∈ (0[,]1) → 𝑇 ∈ ℝ)
1514recnd 11318 . . . . . . . . . . . . . . 15 (𝑇 ∈ (0[,]1) → 𝑇 ∈ ℂ)
1615ad2antlr 726 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑇 ∈ (0[,]1)) ∧ 𝑖 ∈ (1...𝑁)) → 𝑇 ∈ ℂ)
17 ax-1cn 11242 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
18 npcan 11545 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − 𝑇) + 𝑇) = 1)
1917, 18mpan 689 . . . . . . . . . . . . . . . . . 18 (𝑇 ∈ ℂ → ((1 − 𝑇) + 𝑇) = 1)
2019oveq1d 7463 . . . . . . . . . . . . . . . . 17 (𝑇 ∈ ℂ → (((1 − 𝑇) + 𝑇) · (𝐴𝑖)) = (1 · (𝐴𝑖)))
21 mullid 11289 . . . . . . . . . . . . . . . . 17 ((𝐴𝑖) ∈ ℂ → (1 · (𝐴𝑖)) = (𝐴𝑖))
2220, 21sylan9eqr 2802 . . . . . . . . . . . . . . . 16 (((𝐴𝑖) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((1 − 𝑇) + 𝑇) · (𝐴𝑖)) = (𝐴𝑖))
23 subcl 11535 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℂ ∧ 𝑇 ∈ ℂ) → (1 − 𝑇) ∈ ℂ)
2417, 23mpan 689 . . . . . . . . . . . . . . . . . 18 (𝑇 ∈ ℂ → (1 − 𝑇) ∈ ℂ)
2524adantl 481 . . . . . . . . . . . . . . . . 17 (((𝐴𝑖) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (1 − 𝑇) ∈ ℂ)
26 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝐴𝑖) ∈ ℂ ∧ 𝑇 ∈ ℂ) → 𝑇 ∈ ℂ)
27 simpl 482 . . . . . . . . . . . . . . . . 17 (((𝐴𝑖) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (𝐴𝑖) ∈ ℂ)
2825, 26, 27adddird 11315 . . . . . . . . . . . . . . . 16 (((𝐴𝑖) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((1 − 𝑇) + 𝑇) · (𝐴𝑖)) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐴𝑖))))
2922, 28eqtr3d 2782 . . . . . . . . . . . . . . 15 (((𝐴𝑖) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (𝐴𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐴𝑖))))
3029eqeq1d 2742 . . . . . . . . . . . . . 14 (((𝐴𝑖) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((𝐴𝑖) = (𝐵𝑖) ↔ (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐴𝑖))) = (𝐵𝑖)))
3112, 16, 30syl2anc 583 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑇 ∈ (0[,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴𝑖) = (𝐵𝑖) ↔ (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐴𝑖))) = (𝐵𝑖)))
32 eqcom 2747 . . . . . . . . . . . . 13 ((((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐴𝑖))) = (𝐵𝑖) ↔ (𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐴𝑖))))
3331, 32bitrdi 287 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑇 ∈ (0[,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴𝑖) = (𝐵𝑖) ↔ (𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐴𝑖)))))
3433ralbidva 3182 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑇 ∈ (0[,]1)) → (∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖) ↔ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐴𝑖)))))
3510, 34bitrd 279 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑇 ∈ (0[,]1)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐴𝑖)))))
366, 35imbitrrid 246 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑇 ∈ (0[,]1)) → ((∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ 𝐴 = 𝐶) → 𝐴 = 𝐵))
3736expd 415 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑇 ∈ (0[,]1)) → (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) → (𝐴 = 𝐶𝐴 = 𝐵)))
3837impr 454 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → (𝐴 = 𝐶𝐴 = 𝐵))
3938necon3d 2967 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → (𝐴𝐵𝐴𝐶))
4039ex 412 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖)))) → (𝐴𝐵𝐴𝐶)))
4140com23 86 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴𝐵 → ((𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖)))) → 𝐴𝐶)))
4241exp4a 431 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴𝐵 → (𝑇 ∈ (0[,]1) → (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) → 𝐴𝐶))))
43423imp2 1349 . 2 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴𝐵𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → 𝐴𝐶)
44 simplr1 1215 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴𝐵𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → 𝐴 ∈ (𝔼‘𝑁))
45 simplr3 1217 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴𝐵𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → 𝐶 ∈ (𝔼‘𝑁))
46 eqeelen 28937 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐶 ↔ Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2) = 0))
4744, 45, 46syl2anc 583 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴𝐵𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → (𝐴 = 𝐶 ↔ Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2) = 0))
4847necon3bid 2991 . 2 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴𝐵𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → (𝐴𝐶 ↔ Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2) ≠ 0))
4943, 48mpbid 232 1 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴𝐵𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  cle 11325  cmin 11520  cn 12293  2c2 12348  [,]cicc 13410  ...cfz 13567  cexp 14112  Σcsu 15734  𝔼cee 28921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-ee 28924
This theorem is referenced by:  ax5seglem6  28967
  Copyright terms: Public domain W3C validator