MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax5seglem5 Structured version   Visualization version   GIF version

Theorem ax5seglem5 28786
Description: Lemma for ax5seg 28791. If ๐ต is between ๐ด and ๐ถ, and ๐ด is distinct from ๐ต, then ๐ด is distinct from ๐ถ. (Contributed by Scott Fenton, 11-Jun-2013.)
Assertion
Ref Expression
ax5seglem5 (((๐‘ โˆˆ โ„• โˆง (๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ถ โˆˆ (๐”ผโ€˜๐‘))) โˆง (๐ด โ‰  ๐ต โˆง ๐‘‡ โˆˆ (0[,]1) โˆง โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘‡) ยท (๐ดโ€˜๐‘–)) + (๐‘‡ ยท (๐ถโ€˜๐‘–))))) โ†’ ฮฃ๐‘— โˆˆ (1...๐‘)(((๐ดโ€˜๐‘—) โˆ’ (๐ถโ€˜๐‘—))โ†‘2) โ‰  0)
Distinct variable groups:   ๐ด,๐‘–,๐‘—   ๐ต,๐‘–,๐‘—   ๐ถ,๐‘–,๐‘—   ๐‘‡,๐‘–   ๐‘–,๐‘,๐‘—
Allowed substitution hint:   ๐‘‡(๐‘—)

Proof of Theorem ax5seglem5
StepHypRef Expression
1 fveq1 6890 . . . . . . . . . . . . . . 15 (๐ด = ๐ถ โ†’ (๐ดโ€˜๐‘–) = (๐ถโ€˜๐‘–))
21oveq2d 7431 . . . . . . . . . . . . . 14 (๐ด = ๐ถ โ†’ (๐‘‡ ยท (๐ดโ€˜๐‘–)) = (๐‘‡ ยท (๐ถโ€˜๐‘–)))
32oveq2d 7431 . . . . . . . . . . . . 13 (๐ด = ๐ถ โ†’ (((1 โˆ’ ๐‘‡) ยท (๐ดโ€˜๐‘–)) + (๐‘‡ ยท (๐ดโ€˜๐‘–))) = (((1 โˆ’ ๐‘‡) ยท (๐ดโ€˜๐‘–)) + (๐‘‡ ยท (๐ถโ€˜๐‘–))))
43eqeq2d 2736 . . . . . . . . . . . 12 (๐ด = ๐ถ โ†’ ((๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘‡) ยท (๐ดโ€˜๐‘–)) + (๐‘‡ ยท (๐ดโ€˜๐‘–))) โ†” (๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘‡) ยท (๐ดโ€˜๐‘–)) + (๐‘‡ ยท (๐ถโ€˜๐‘–)))))
54ralbidv 3168 . . . . . . . . . . 11 (๐ด = ๐ถ โ†’ (โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘‡) ยท (๐ดโ€˜๐‘–)) + (๐‘‡ ยท (๐ดโ€˜๐‘–))) โ†” โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘‡) ยท (๐ดโ€˜๐‘–)) + (๐‘‡ ยท (๐ถโ€˜๐‘–)))))
65biimparc 478 . . . . . . . . . 10 ((โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘‡) ยท (๐ดโ€˜๐‘–)) + (๐‘‡ ยท (๐ถโ€˜๐‘–))) โˆง ๐ด = ๐ถ) โ†’ โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘‡) ยท (๐ดโ€˜๐‘–)) + (๐‘‡ ยท (๐ดโ€˜๐‘–))))
7 simplr1 1212 . . . . . . . . . . . 12 (((๐‘ โˆˆ โ„• โˆง (๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ถ โˆˆ (๐”ผโ€˜๐‘))) โˆง ๐‘‡ โˆˆ (0[,]1)) โ†’ ๐ด โˆˆ (๐”ผโ€˜๐‘))
8 simplr2 1213 . . . . . . . . . . . 12 (((๐‘ โˆˆ โ„• โˆง (๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ถ โˆˆ (๐”ผโ€˜๐‘))) โˆง ๐‘‡ โˆˆ (0[,]1)) โ†’ ๐ต โˆˆ (๐”ผโ€˜๐‘))
9 eqeefv 28756 . . . . . . . . . . . 12 ((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘)) โ†’ (๐ด = ๐ต โ†” โˆ€๐‘– โˆˆ (1...๐‘)(๐ดโ€˜๐‘–) = (๐ตโ€˜๐‘–)))
107, 8, 9syl2anc 582 . . . . . . . . . . 11 (((๐‘ โˆˆ โ„• โˆง (๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ถ โˆˆ (๐”ผโ€˜๐‘))) โˆง ๐‘‡ โˆˆ (0[,]1)) โ†’ (๐ด = ๐ต โ†” โˆ€๐‘– โˆˆ (1...๐‘)(๐ดโ€˜๐‘–) = (๐ตโ€˜๐‘–)))
11 fveecn 28755 . . . . . . . . . . . . . . 15 ((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐‘– โˆˆ (1...๐‘)) โ†’ (๐ดโ€˜๐‘–) โˆˆ โ„‚)
127, 11sylan 578 . . . . . . . . . . . . . 14 ((((๐‘ โˆˆ โ„• โˆง (๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ถ โˆˆ (๐”ผโ€˜๐‘))) โˆง ๐‘‡ โˆˆ (0[,]1)) โˆง ๐‘– โˆˆ (1...๐‘)) โ†’ (๐ดโ€˜๐‘–) โˆˆ โ„‚)
13 elicc01 13473 . . . . . . . . . . . . . . . . 17 (๐‘‡ โˆˆ (0[,]1) โ†” (๐‘‡ โˆˆ โ„ โˆง 0 โ‰ค ๐‘‡ โˆง ๐‘‡ โ‰ค 1))
1413simp1bi 1142 . . . . . . . . . . . . . . . 16 (๐‘‡ โˆˆ (0[,]1) โ†’ ๐‘‡ โˆˆ โ„)
1514recnd 11270 . . . . . . . . . . . . . . 15 (๐‘‡ โˆˆ (0[,]1) โ†’ ๐‘‡ โˆˆ โ„‚)
1615ad2antlr 725 . . . . . . . . . . . . . 14 ((((๐‘ โˆˆ โ„• โˆง (๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ถ โˆˆ (๐”ผโ€˜๐‘))) โˆง ๐‘‡ โˆˆ (0[,]1)) โˆง ๐‘– โˆˆ (1...๐‘)) โ†’ ๐‘‡ โˆˆ โ„‚)
17 ax-1cn 11194 . . . . . . . . . . . . . . . . . . 19 1 โˆˆ โ„‚
18 npcan 11497 . . . . . . . . . . . . . . . . . . 19 ((1 โˆˆ โ„‚ โˆง ๐‘‡ โˆˆ โ„‚) โ†’ ((1 โˆ’ ๐‘‡) + ๐‘‡) = 1)
1917, 18mpan 688 . . . . . . . . . . . . . . . . . 18 (๐‘‡ โˆˆ โ„‚ โ†’ ((1 โˆ’ ๐‘‡) + ๐‘‡) = 1)
2019oveq1d 7430 . . . . . . . . . . . . . . . . 17 (๐‘‡ โˆˆ โ„‚ โ†’ (((1 โˆ’ ๐‘‡) + ๐‘‡) ยท (๐ดโ€˜๐‘–)) = (1 ยท (๐ดโ€˜๐‘–)))
21 mullid 11241 . . . . . . . . . . . . . . . . 17 ((๐ดโ€˜๐‘–) โˆˆ โ„‚ โ†’ (1 ยท (๐ดโ€˜๐‘–)) = (๐ดโ€˜๐‘–))
2220, 21sylan9eqr 2787 . . . . . . . . . . . . . . . 16 (((๐ดโ€˜๐‘–) โˆˆ โ„‚ โˆง ๐‘‡ โˆˆ โ„‚) โ†’ (((1 โˆ’ ๐‘‡) + ๐‘‡) ยท (๐ดโ€˜๐‘–)) = (๐ดโ€˜๐‘–))
23 subcl 11487 . . . . . . . . . . . . . . . . . . 19 ((1 โˆˆ โ„‚ โˆง ๐‘‡ โˆˆ โ„‚) โ†’ (1 โˆ’ ๐‘‡) โˆˆ โ„‚)
2417, 23mpan 688 . . . . . . . . . . . . . . . . . 18 (๐‘‡ โˆˆ โ„‚ โ†’ (1 โˆ’ ๐‘‡) โˆˆ โ„‚)
2524adantl 480 . . . . . . . . . . . . . . . . 17 (((๐ดโ€˜๐‘–) โˆˆ โ„‚ โˆง ๐‘‡ โˆˆ โ„‚) โ†’ (1 โˆ’ ๐‘‡) โˆˆ โ„‚)
26 simpr 483 . . . . . . . . . . . . . . . . 17 (((๐ดโ€˜๐‘–) โˆˆ โ„‚ โˆง ๐‘‡ โˆˆ โ„‚) โ†’ ๐‘‡ โˆˆ โ„‚)
27 simpl 481 . . . . . . . . . . . . . . . . 17 (((๐ดโ€˜๐‘–) โˆˆ โ„‚ โˆง ๐‘‡ โˆˆ โ„‚) โ†’ (๐ดโ€˜๐‘–) โˆˆ โ„‚)
2825, 26, 27adddird 11267 . . . . . . . . . . . . . . . 16 (((๐ดโ€˜๐‘–) โˆˆ โ„‚ โˆง ๐‘‡ โˆˆ โ„‚) โ†’ (((1 โˆ’ ๐‘‡) + ๐‘‡) ยท (๐ดโ€˜๐‘–)) = (((1 โˆ’ ๐‘‡) ยท (๐ดโ€˜๐‘–)) + (๐‘‡ ยท (๐ดโ€˜๐‘–))))
2922, 28eqtr3d 2767 . . . . . . . . . . . . . . 15 (((๐ดโ€˜๐‘–) โˆˆ โ„‚ โˆง ๐‘‡ โˆˆ โ„‚) โ†’ (๐ดโ€˜๐‘–) = (((1 โˆ’ ๐‘‡) ยท (๐ดโ€˜๐‘–)) + (๐‘‡ ยท (๐ดโ€˜๐‘–))))
3029eqeq1d 2727 . . . . . . . . . . . . . 14 (((๐ดโ€˜๐‘–) โˆˆ โ„‚ โˆง ๐‘‡ โˆˆ โ„‚) โ†’ ((๐ดโ€˜๐‘–) = (๐ตโ€˜๐‘–) โ†” (((1 โˆ’ ๐‘‡) ยท (๐ดโ€˜๐‘–)) + (๐‘‡ ยท (๐ดโ€˜๐‘–))) = (๐ตโ€˜๐‘–)))
3112, 16, 30syl2anc 582 . . . . . . . . . . . . 13 ((((๐‘ โˆˆ โ„• โˆง (๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ถ โˆˆ (๐”ผโ€˜๐‘))) โˆง ๐‘‡ โˆˆ (0[,]1)) โˆง ๐‘– โˆˆ (1...๐‘)) โ†’ ((๐ดโ€˜๐‘–) = (๐ตโ€˜๐‘–) โ†” (((1 โˆ’ ๐‘‡) ยท (๐ดโ€˜๐‘–)) + (๐‘‡ ยท (๐ดโ€˜๐‘–))) = (๐ตโ€˜๐‘–)))
32 eqcom 2732 . . . . . . . . . . . . 13 ((((1 โˆ’ ๐‘‡) ยท (๐ดโ€˜๐‘–)) + (๐‘‡ ยท (๐ดโ€˜๐‘–))) = (๐ตโ€˜๐‘–) โ†” (๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘‡) ยท (๐ดโ€˜๐‘–)) + (๐‘‡ ยท (๐ดโ€˜๐‘–))))
3331, 32bitrdi 286 . . . . . . . . . . . 12 ((((๐‘ โˆˆ โ„• โˆง (๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ถ โˆˆ (๐”ผโ€˜๐‘))) โˆง ๐‘‡ โˆˆ (0[,]1)) โˆง ๐‘– โˆˆ (1...๐‘)) โ†’ ((๐ดโ€˜๐‘–) = (๐ตโ€˜๐‘–) โ†” (๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘‡) ยท (๐ดโ€˜๐‘–)) + (๐‘‡ ยท (๐ดโ€˜๐‘–)))))
3433ralbidva 3166 . . . . . . . . . . 11 (((๐‘ โˆˆ โ„• โˆง (๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ถ โˆˆ (๐”ผโ€˜๐‘))) โˆง ๐‘‡ โˆˆ (0[,]1)) โ†’ (โˆ€๐‘– โˆˆ (1...๐‘)(๐ดโ€˜๐‘–) = (๐ตโ€˜๐‘–) โ†” โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘‡) ยท (๐ดโ€˜๐‘–)) + (๐‘‡ ยท (๐ดโ€˜๐‘–)))))
3510, 34bitrd 278 . . . . . . . . . 10 (((๐‘ โˆˆ โ„• โˆง (๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ถ โˆˆ (๐”ผโ€˜๐‘))) โˆง ๐‘‡ โˆˆ (0[,]1)) โ†’ (๐ด = ๐ต โ†” โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘‡) ยท (๐ดโ€˜๐‘–)) + (๐‘‡ ยท (๐ดโ€˜๐‘–)))))
366, 35imbitrrid 245 . . . . . . . . 9 (((๐‘ โˆˆ โ„• โˆง (๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ถ โˆˆ (๐”ผโ€˜๐‘))) โˆง ๐‘‡ โˆˆ (0[,]1)) โ†’ ((โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘‡) ยท (๐ดโ€˜๐‘–)) + (๐‘‡ ยท (๐ถโ€˜๐‘–))) โˆง ๐ด = ๐ถ) โ†’ ๐ด = ๐ต))
3736expd 414 . . . . . . . 8 (((๐‘ โˆˆ โ„• โˆง (๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ถ โˆˆ (๐”ผโ€˜๐‘))) โˆง ๐‘‡ โˆˆ (0[,]1)) โ†’ (โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘‡) ยท (๐ดโ€˜๐‘–)) + (๐‘‡ ยท (๐ถโ€˜๐‘–))) โ†’ (๐ด = ๐ถ โ†’ ๐ด = ๐ต)))
3837impr 453 . . . . . . 7 (((๐‘ โˆˆ โ„• โˆง (๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ถ โˆˆ (๐”ผโ€˜๐‘))) โˆง (๐‘‡ โˆˆ (0[,]1) โˆง โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘‡) ยท (๐ดโ€˜๐‘–)) + (๐‘‡ ยท (๐ถโ€˜๐‘–))))) โ†’ (๐ด = ๐ถ โ†’ ๐ด = ๐ต))
3938necon3d 2951 . . . . . 6 (((๐‘ โˆˆ โ„• โˆง (๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ถ โˆˆ (๐”ผโ€˜๐‘))) โˆง (๐‘‡ โˆˆ (0[,]1) โˆง โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘‡) ยท (๐ดโ€˜๐‘–)) + (๐‘‡ ยท (๐ถโ€˜๐‘–))))) โ†’ (๐ด โ‰  ๐ต โ†’ ๐ด โ‰  ๐ถ))
4039ex 411 . . . . 5 ((๐‘ โˆˆ โ„• โˆง (๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ถ โˆˆ (๐”ผโ€˜๐‘))) โ†’ ((๐‘‡ โˆˆ (0[,]1) โˆง โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘‡) ยท (๐ดโ€˜๐‘–)) + (๐‘‡ ยท (๐ถโ€˜๐‘–)))) โ†’ (๐ด โ‰  ๐ต โ†’ ๐ด โ‰  ๐ถ)))
4140com23 86 . . . 4 ((๐‘ โˆˆ โ„• โˆง (๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ถ โˆˆ (๐”ผโ€˜๐‘))) โ†’ (๐ด โ‰  ๐ต โ†’ ((๐‘‡ โˆˆ (0[,]1) โˆง โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘‡) ยท (๐ดโ€˜๐‘–)) + (๐‘‡ ยท (๐ถโ€˜๐‘–)))) โ†’ ๐ด โ‰  ๐ถ)))
4241exp4a 430 . . 3 ((๐‘ โˆˆ โ„• โˆง (๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ถ โˆˆ (๐”ผโ€˜๐‘))) โ†’ (๐ด โ‰  ๐ต โ†’ (๐‘‡ โˆˆ (0[,]1) โ†’ (โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘‡) ยท (๐ดโ€˜๐‘–)) + (๐‘‡ ยท (๐ถโ€˜๐‘–))) โ†’ ๐ด โ‰  ๐ถ))))
43423imp2 1346 . 2 (((๐‘ โˆˆ โ„• โˆง (๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ถ โˆˆ (๐”ผโ€˜๐‘))) โˆง (๐ด โ‰  ๐ต โˆง ๐‘‡ โˆˆ (0[,]1) โˆง โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘‡) ยท (๐ดโ€˜๐‘–)) + (๐‘‡ ยท (๐ถโ€˜๐‘–))))) โ†’ ๐ด โ‰  ๐ถ)
44 simplr1 1212 . . . 4 (((๐‘ โˆˆ โ„• โˆง (๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ถ โˆˆ (๐”ผโ€˜๐‘))) โˆง (๐ด โ‰  ๐ต โˆง ๐‘‡ โˆˆ (0[,]1) โˆง โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘‡) ยท (๐ดโ€˜๐‘–)) + (๐‘‡ ยท (๐ถโ€˜๐‘–))))) โ†’ ๐ด โˆˆ (๐”ผโ€˜๐‘))
45 simplr3 1214 . . . 4 (((๐‘ โˆˆ โ„• โˆง (๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ถ โˆˆ (๐”ผโ€˜๐‘))) โˆง (๐ด โ‰  ๐ต โˆง ๐‘‡ โˆˆ (0[,]1) โˆง โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘‡) ยท (๐ดโ€˜๐‘–)) + (๐‘‡ ยท (๐ถโ€˜๐‘–))))) โ†’ ๐ถ โˆˆ (๐”ผโ€˜๐‘))
46 eqeelen 28757 . . . 4 ((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ถ โˆˆ (๐”ผโ€˜๐‘)) โ†’ (๐ด = ๐ถ โ†” ฮฃ๐‘— โˆˆ (1...๐‘)(((๐ดโ€˜๐‘—) โˆ’ (๐ถโ€˜๐‘—))โ†‘2) = 0))
4744, 45, 46syl2anc 582 . . 3 (((๐‘ โˆˆ โ„• โˆง (๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ถ โˆˆ (๐”ผโ€˜๐‘))) โˆง (๐ด โ‰  ๐ต โˆง ๐‘‡ โˆˆ (0[,]1) โˆง โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘‡) ยท (๐ดโ€˜๐‘–)) + (๐‘‡ ยท (๐ถโ€˜๐‘–))))) โ†’ (๐ด = ๐ถ โ†” ฮฃ๐‘— โˆˆ (1...๐‘)(((๐ดโ€˜๐‘—) โˆ’ (๐ถโ€˜๐‘—))โ†‘2) = 0))
4847necon3bid 2975 . 2 (((๐‘ โˆˆ โ„• โˆง (๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ถ โˆˆ (๐”ผโ€˜๐‘))) โˆง (๐ด โ‰  ๐ต โˆง ๐‘‡ โˆˆ (0[,]1) โˆง โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘‡) ยท (๐ดโ€˜๐‘–)) + (๐‘‡ ยท (๐ถโ€˜๐‘–))))) โ†’ (๐ด โ‰  ๐ถ โ†” ฮฃ๐‘— โˆˆ (1...๐‘)(((๐ดโ€˜๐‘—) โˆ’ (๐ถโ€˜๐‘—))โ†‘2) โ‰  0))
4943, 48mpbid 231 1 (((๐‘ โˆˆ โ„• โˆง (๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ถ โˆˆ (๐”ผโ€˜๐‘))) โˆง (๐ด โ‰  ๐ต โˆง ๐‘‡ โˆˆ (0[,]1) โˆง โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘‡) ยท (๐ดโ€˜๐‘–)) + (๐‘‡ ยท (๐ถโ€˜๐‘–))))) โ†’ ฮฃ๐‘— โˆˆ (1...๐‘)(((๐ดโ€˜๐‘—) โˆ’ (๐ถโ€˜๐‘—))โ†‘2) โ‰  0)
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 394   โˆง w3a 1084   = wceq 1533   โˆˆ wcel 2098   โ‰  wne 2930  โˆ€wral 3051   class class class wbr 5143  โ€˜cfv 6542  (class class class)co 7415  โ„‚cc 11134  โ„cr 11135  0cc0 11136  1c1 11137   + caddc 11139   ยท cmul 11141   โ‰ค cle 11277   โˆ’ cmin 11472  โ„•cn 12240  2c2 12295  [,]cicc 13357  ...cfz 13514  โ†‘cexp 14056  ฮฃcsu 15662  ๐”ผcee 28741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-inf2 9662  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7868  df-1st 7989  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-er 8721  df-map 8843  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-sup 9463  df-oi 9531  df-card 9960  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-div 11900  df-nn 12241  df-2 12303  df-3 12304  df-n0 12501  df-z 12587  df-uz 12851  df-rp 13005  df-ico 13360  df-icc 13361  df-fz 13515  df-fzo 13658  df-seq 13997  df-exp 14057  df-hash 14320  df-cj 15076  df-re 15077  df-im 15078  df-sqrt 15212  df-abs 15213  df-clim 15462  df-sum 15663  df-ee 28744
This theorem is referenced by:  ax5seglem6  28787
  Copyright terms: Public domain W3C validator