MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax5seglem5 Structured version   Visualization version   GIF version

Theorem ax5seglem5 28867
Description: Lemma for ax5seg 28872. If 𝐵 is between 𝐴 and 𝐶, and 𝐴 is distinct from 𝐵, then 𝐴 is distinct from 𝐶. (Contributed by Scott Fenton, 11-Jun-2013.)
Assertion
Ref Expression
ax5seglem5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴𝐵𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2) ≠ 0)
Distinct variable groups:   𝐴,𝑖,𝑗   𝐵,𝑖,𝑗   𝐶,𝑖,𝑗   𝑇,𝑖   𝑖,𝑁,𝑗
Allowed substitution hint:   𝑇(𝑗)

Proof of Theorem ax5seglem5
StepHypRef Expression
1 fveq1 6860 . . . . . . . . . . . . . . 15 (𝐴 = 𝐶 → (𝐴𝑖) = (𝐶𝑖))
21oveq2d 7406 . . . . . . . . . . . . . 14 (𝐴 = 𝐶 → (𝑇 · (𝐴𝑖)) = (𝑇 · (𝐶𝑖)))
32oveq2d 7406 . . . . . . . . . . . . 13 (𝐴 = 𝐶 → (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐴𝑖))) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))
43eqeq2d 2741 . . . . . . . . . . . 12 (𝐴 = 𝐶 → ((𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐴𝑖))) ↔ (𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖)))))
54ralbidv 3157 . . . . . . . . . . 11 (𝐴 = 𝐶 → (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐴𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖)))))
65biimparc 479 . . . . . . . . . 10 ((∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ 𝐴 = 𝐶) → ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐴𝑖))))
7 simplr1 1216 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑇 ∈ (0[,]1)) → 𝐴 ∈ (𝔼‘𝑁))
8 simplr2 1217 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑇 ∈ (0[,]1)) → 𝐵 ∈ (𝔼‘𝑁))
9 eqeefv 28837 . . . . . . . . . . . 12 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
107, 8, 9syl2anc 584 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑇 ∈ (0[,]1)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
11 fveecn 28836 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
127, 11sylan 580 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑇 ∈ (0[,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
13 elicc01 13434 . . . . . . . . . . . . . . . . 17 (𝑇 ∈ (0[,]1) ↔ (𝑇 ∈ ℝ ∧ 0 ≤ 𝑇𝑇 ≤ 1))
1413simp1bi 1145 . . . . . . . . . . . . . . . 16 (𝑇 ∈ (0[,]1) → 𝑇 ∈ ℝ)
1514recnd 11209 . . . . . . . . . . . . . . 15 (𝑇 ∈ (0[,]1) → 𝑇 ∈ ℂ)
1615ad2antlr 727 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑇 ∈ (0[,]1)) ∧ 𝑖 ∈ (1...𝑁)) → 𝑇 ∈ ℂ)
17 ax-1cn 11133 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
18 npcan 11437 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − 𝑇) + 𝑇) = 1)
1917, 18mpan 690 . . . . . . . . . . . . . . . . . 18 (𝑇 ∈ ℂ → ((1 − 𝑇) + 𝑇) = 1)
2019oveq1d 7405 . . . . . . . . . . . . . . . . 17 (𝑇 ∈ ℂ → (((1 − 𝑇) + 𝑇) · (𝐴𝑖)) = (1 · (𝐴𝑖)))
21 mullid 11180 . . . . . . . . . . . . . . . . 17 ((𝐴𝑖) ∈ ℂ → (1 · (𝐴𝑖)) = (𝐴𝑖))
2220, 21sylan9eqr 2787 . . . . . . . . . . . . . . . 16 (((𝐴𝑖) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((1 − 𝑇) + 𝑇) · (𝐴𝑖)) = (𝐴𝑖))
23 subcl 11427 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℂ ∧ 𝑇 ∈ ℂ) → (1 − 𝑇) ∈ ℂ)
2417, 23mpan 690 . . . . . . . . . . . . . . . . . 18 (𝑇 ∈ ℂ → (1 − 𝑇) ∈ ℂ)
2524adantl 481 . . . . . . . . . . . . . . . . 17 (((𝐴𝑖) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (1 − 𝑇) ∈ ℂ)
26 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝐴𝑖) ∈ ℂ ∧ 𝑇 ∈ ℂ) → 𝑇 ∈ ℂ)
27 simpl 482 . . . . . . . . . . . . . . . . 17 (((𝐴𝑖) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (𝐴𝑖) ∈ ℂ)
2825, 26, 27adddird 11206 . . . . . . . . . . . . . . . 16 (((𝐴𝑖) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((1 − 𝑇) + 𝑇) · (𝐴𝑖)) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐴𝑖))))
2922, 28eqtr3d 2767 . . . . . . . . . . . . . . 15 (((𝐴𝑖) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (𝐴𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐴𝑖))))
3029eqeq1d 2732 . . . . . . . . . . . . . 14 (((𝐴𝑖) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((𝐴𝑖) = (𝐵𝑖) ↔ (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐴𝑖))) = (𝐵𝑖)))
3112, 16, 30syl2anc 584 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑇 ∈ (0[,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴𝑖) = (𝐵𝑖) ↔ (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐴𝑖))) = (𝐵𝑖)))
32 eqcom 2737 . . . . . . . . . . . . 13 ((((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐴𝑖))) = (𝐵𝑖) ↔ (𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐴𝑖))))
3331, 32bitrdi 287 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑇 ∈ (0[,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴𝑖) = (𝐵𝑖) ↔ (𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐴𝑖)))))
3433ralbidva 3155 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑇 ∈ (0[,]1)) → (∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖) ↔ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐴𝑖)))))
3510, 34bitrd 279 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑇 ∈ (0[,]1)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐴𝑖)))))
366, 35imbitrrid 246 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑇 ∈ (0[,]1)) → ((∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ 𝐴 = 𝐶) → 𝐴 = 𝐵))
3736expd 415 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑇 ∈ (0[,]1)) → (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) → (𝐴 = 𝐶𝐴 = 𝐵)))
3837impr 454 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → (𝐴 = 𝐶𝐴 = 𝐵))
3938necon3d 2947 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → (𝐴𝐵𝐴𝐶))
4039ex 412 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖)))) → (𝐴𝐵𝐴𝐶)))
4140com23 86 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴𝐵 → ((𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖)))) → 𝐴𝐶)))
4241exp4a 431 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴𝐵 → (𝑇 ∈ (0[,]1) → (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) → 𝐴𝐶))))
43423imp2 1350 . 2 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴𝐵𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → 𝐴𝐶)
44 simplr1 1216 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴𝐵𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → 𝐴 ∈ (𝔼‘𝑁))
45 simplr3 1218 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴𝐵𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → 𝐶 ∈ (𝔼‘𝑁))
46 eqeelen 28838 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐶 ↔ Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2) = 0))
4744, 45, 46syl2anc 584 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴𝐵𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → (𝐴 = 𝐶 ↔ Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2) = 0))
4847necon3bid 2970 . 2 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴𝐵𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → (𝐴𝐶 ↔ Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2) ≠ 0))
4943, 48mpbid 232 1 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴𝐵𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  cle 11216  cmin 11412  cn 12193  2c2 12248  [,]cicc 13316  ...cfz 13475  cexp 14033  Σcsu 15659  𝔼cee 28822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-ee 28825
This theorem is referenced by:  ax5seglem6  28868
  Copyright terms: Public domain W3C validator