Step | Hyp | Ref
| Expression |
1 | | eqid 2734 |
. . 3
⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) |
2 | | eqid 2734 |
. . 3
⊢
(Base‘(𝐼
mPwSer 𝑅)) =
(Base‘(𝐼 mPwSer 𝑅)) |
3 | | psdmplcl.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Mnd) |
4 | | mndmgm 18766 |
. . . 4
⊢ (𝑅 ∈ Mnd → 𝑅 ∈ Mgm) |
5 | 3, 4 | syl 17 |
. . 3
⊢ (𝜑 → 𝑅 ∈ Mgm) |
6 | | psdmplcl.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝐼) |
7 | | psdmplcl.p |
. . . . 5
⊢ 𝑃 = (𝐼 mPoly 𝑅) |
8 | | psdmplcl.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑃) |
9 | 7, 1, 8, 2 | mplbasss 22034 |
. . . 4
⊢ 𝐵 ⊆ (Base‘(𝐼 mPwSer 𝑅)) |
10 | | psdmplcl.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
11 | 9, 10 | sselid 3992 |
. . 3
⊢ (𝜑 → 𝐹 ∈ (Base‘(𝐼 mPwSer 𝑅))) |
12 | 1, 2, 5, 6, 11 | psdcl 22182 |
. 2
⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ (Base‘(𝐼 mPwSer 𝑅))) |
13 | | eqid 2734 |
. . . 4
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
14 | 1, 2, 13, 6, 11 | psdval 22180 |
. . 3
⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) = (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) |
15 | | ovex 7463 |
. . . . . . 7
⊢
(ℕ0 ↑m 𝐼) ∈ V |
16 | 15 | rabex 5344 |
. . . . . 6
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V |
17 | 16 | a1i 11 |
. . . . 5
⊢ (𝜑 → {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V) |
18 | 17 | mptexd 7243 |
. . . 4
⊢ (𝜑 → (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) ∈ V) |
19 | | fvexd 6921 |
. . . 4
⊢ (𝜑 → (0g‘𝑅) ∈ V) |
20 | | funmpt 6605 |
. . . . 5
⊢ Fun
(𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) |
21 | 20 | a1i 11 |
. . . 4
⊢ (𝜑 → Fun (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) |
22 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
23 | | reldmmpl 22025 |
. . . . . . . . . . . . 13
⊢ Rel dom
mPoly |
24 | 7, 8, 23 | strov2rcl 17252 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ 𝐵 → 𝐼 ∈ V) |
25 | 10, 24 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐼 ∈ V) |
26 | 13 | psrbagsn 22104 |
. . . . . . . . . . 11
⊢ (𝐼 ∈ V → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
27 | 25, 26 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
28 | 27 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
29 | 13 | psrbagaddcl 21961 |
. . . . . . . . 9
⊢ ((𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
30 | 22, 28, 29 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
31 | | eqidd 2735 |
. . . . . . . 8
⊢ (𝜑 → (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
32 | | eqid 2734 |
. . . . . . . . . 10
⊢
(Base‘𝑅) =
(Base‘𝑅) |
33 | 7, 32, 8, 13, 10 | mplelf 22035 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
34 | 33 | feqmptd 6976 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 = (𝑧 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝐹‘𝑧))) |
35 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑧 = (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝐹‘𝑧) = (𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
36 | 30, 31, 34, 35 | fmptco 7148 |
. . . . . . 7
⊢ (𝜑 → (𝐹 ∘ (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) |
37 | | eqid 2734 |
. . . . . . . . 9
⊢
(0g‘𝑅) = (0g‘𝑅) |
38 | 7, 8, 37, 10 | mplelsfi 22032 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 finSupp (0g‘𝑅)) |
39 | 30 | fmpttd 7134 |
. . . . . . . . 9
⊢ (𝜑 → (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))):{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}⟶{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
40 | | ovex 7463 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ V |
41 | | eqid 2734 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑏 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑏 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
42 | 40, 41 | fnmpti 6711 |
. . . . . . . . . . . . . 14
⊢ (𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑏 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) Fn {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
43 | 42 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑏 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) Fn {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
44 | | dffn3 6748 |
. . . . . . . . . . . . 13
⊢ ((𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑏 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) Fn {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↔ (𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑏 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))):{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}⟶ran
(𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑏 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
45 | 43, 44 | sylib 218 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑏 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))):{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}⟶ran
(𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑏 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
46 | 45, 39 | fcod 6761 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑏 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∘ (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))):{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}⟶ran
(𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑏 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
47 | 46 | ffnd 6737 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑏 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∘ (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) Fn {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
48 | | fnresi 6697 |
. . . . . . . . . . 11
⊢ ( I
↾ {ℎ ∈
(ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) Fn {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
49 | 48 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ( I ↾ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) Fn {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
50 | 13 | psrbagf 21955 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → 𝑑:𝐼⟶ℕ0) |
51 | 50 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑑:𝐼⟶ℕ0) |
52 | 51 | ffvelcdmda 7103 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) ∈
ℕ0) |
53 | 52 | nn0cnd 12586 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) ∈ ℂ) |
54 | | ax-1cn 11210 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℂ |
55 | | 0cn 11250 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
ℂ |
56 | 54, 55 | ifcli 4577 |
. . . . . . . . . . . . . . 15
⊢ if(𝑖 = 𝑋, 1, 0) ∈ ℂ |
57 | 56 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℂ) |
58 | 53, 57 | pncand 11618 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → (((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) − if(𝑖 = 𝑋, 1, 0)) = (𝑑‘𝑖)) |
59 | 58 | mpteq2dva 5247 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑖 ∈ 𝐼 ↦ (((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) − if(𝑖 = 𝑋, 1, 0))) = (𝑖 ∈ 𝐼 ↦ (𝑑‘𝑖))) |
60 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
61 | 27 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
62 | 13 | psrbagaddcl 21961 |
. . . . . . . . . . . . . . 15
⊢ ((𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
63 | 60, 61, 62 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
64 | 13 | psrbagf 21955 |
. . . . . . . . . . . . . . 15
⊢ ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0) |
65 | 64 | ffnd 6737 |
. . . . . . . . . . . . . 14
⊢ ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼) |
66 | 63, 65 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼) |
67 | | 1ex 11254 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
V |
68 | | c0ex 11252 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
V |
69 | 67, 68 | ifex 4580 |
. . . . . . . . . . . . . . 15
⊢ if(𝑦 = 𝑋, 1, 0) ∈ V |
70 | | eqid 2734 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) |
71 | 69, 70 | fnmpti 6711 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼 |
72 | 71 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼) |
73 | 25 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝐼 ∈ V) |
74 | | inidm 4234 |
. . . . . . . . . . . . 13
⊢ (𝐼 ∩ 𝐼) = 𝐼 |
75 | 50 | ffnd 6737 |
. . . . . . . . . . . . . . 15
⊢ (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → 𝑑 Fn 𝐼) |
76 | 75 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑑 Fn 𝐼) |
77 | | eqidd 2735 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) = (𝑑‘𝑖)) |
78 | | eqeq1 2738 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑖 → (𝑦 = 𝑋 ↔ 𝑖 = 𝑋)) |
79 | 78 | ifbid 4553 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑖 → if(𝑦 = 𝑋, 1, 0) = if(𝑖 = 𝑋, 1, 0)) |
80 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → 𝑖 ∈ 𝐼) |
81 | 67, 68 | ifex 4580 |
. . . . . . . . . . . . . . . 16
⊢ if(𝑖 = 𝑋, 1, 0) ∈ V |
82 | 81 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ V) |
83 | 70, 79, 80, 82 | fvmptd3 7038 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0)) |
84 | 76, 72, 73, 73, 74, 77, 83 | ofval 7707 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) |
85 | 66, 72, 73, 73, 74, 84, 83 | offval 7705 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖 ∈ 𝐼 ↦ (((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) − if(𝑖 = 𝑋, 1, 0)))) |
86 | 51 | feqmptd 6976 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑑 = (𝑖 ∈ 𝐼 ↦ (𝑑‘𝑖))) |
87 | 59, 85, 86 | 3eqtr4d 2784 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 𝑑) |
88 | 30 | adantlr 715 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
89 | 88 | fmpttd 7134 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))):{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}⟶{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
90 | 89, 60 | fvco3d 7008 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑏 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∘ (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))‘𝑑) = ((𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑏 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))‘((𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))‘𝑑))) |
91 | | eqid 2734 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
92 | | oveq1 7437 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑑 → (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
93 | | ovexd 7465 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ V) |
94 | 91, 92, 60, 93 | fvmptd3 7038 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))‘𝑑) = (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
95 | 94 | fveq2d 6910 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑏 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))‘((𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))‘𝑑)) = ((𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑏 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
96 | | oveq1 7437 |
. . . . . . . . . . . . 13
⊢ (𝑏 = (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑏 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
97 | | ovexd 7465 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ V) |
98 | 41, 96, 63, 97 | fvmptd3 7038 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑏 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
99 | 90, 95, 98 | 3eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑏 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∘ (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))‘𝑑) = ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
100 | | fvresi 7192 |
. . . . . . . . . . . 12
⊢ (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → (( I
↾ {ℎ ∈
(ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin})‘𝑑) = 𝑑) |
101 | 100 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (( I
↾ {ℎ ∈
(ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin})‘𝑑) = 𝑑) |
102 | 87, 99, 101 | 3eqtr4d 2784 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑏 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∘ (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))‘𝑑) = (( I ↾ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin})‘𝑑)) |
103 | 47, 49, 102 | eqfnfvd 7053 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑏 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∘ (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = ( I ↾ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin})) |
104 | | fcof1 7306 |
. . . . . . . . 9
⊢ (((𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))):{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}⟶{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ ((𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑏 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∘ (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = ( I ↾ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin})) → (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))):{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}–1-1→{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
105 | 39, 103, 104 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))):{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}–1-1→{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
106 | 38, 105, 19, 10 | fsuppco 9439 |
. . . . . . 7
⊢ (𝜑 → (𝐹 ∘ (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) finSupp
(0g‘𝑅)) |
107 | 36, 106 | eqbrtrrd 5171 |
. . . . . 6
⊢ (𝜑 → (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) finSupp
(0g‘𝑅)) |
108 | 107 | fsuppimpd 9406 |
. . . . 5
⊢ (𝜑 → ((𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) supp (0g‘𝑅)) ∈ Fin) |
109 | | ssidd 4018 |
. . . . . 6
⊢ (𝜑 → ((𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) supp (0g‘𝑅)) ⊆ ((𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) supp (0g‘𝑅))) |
110 | | eqid 2734 |
. . . . . . . 8
⊢
(.g‘𝑅) = (.g‘𝑅) |
111 | 32, 110, 37 | mulgnn0z 19131 |
. . . . . . 7
⊢ ((𝑅 ∈ Mnd ∧ 𝑛 ∈ ℕ0)
→ (𝑛(.g‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
112 | 3, 111 | sylan 580 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑛(.g‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
113 | 13 | psrbagf 21955 |
. . . . . . . . 9
⊢ (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → 𝑘:𝐼⟶ℕ0) |
114 | 113 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑘:𝐼⟶ℕ0) |
115 | 6 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑋 ∈ 𝐼) |
116 | 114, 115 | ffvelcdmd 7104 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑘‘𝑋) ∈
ℕ0) |
117 | | peano2nn0 12563 |
. . . . . . 7
⊢ ((𝑘‘𝑋) ∈ ℕ0 → ((𝑘‘𝑋) + 1) ∈
ℕ0) |
118 | 116, 117 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑘‘𝑋) + 1) ∈
ℕ0) |
119 | | fvexd 6921 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∈ V) |
120 | 109, 112,
118, 119, 19 | suppssov2 8221 |
. . . . 5
⊢ (𝜑 → ((𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) supp (0g‘𝑅)) ⊆ ((𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) supp (0g‘𝑅))) |
121 | 108, 120 | ssfid 9298 |
. . . 4
⊢ (𝜑 → ((𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) supp (0g‘𝑅)) ∈ Fin) |
122 | 18, 19, 21, 121 | isfsuppd 9403 |
. . 3
⊢ (𝜑 → (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) finSupp
(0g‘𝑅)) |
123 | 14, 122 | eqbrtrd 5169 |
. 2
⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) finSupp (0g‘𝑅)) |
124 | 7, 1, 2, 37, 8 | mplelbas 22028 |
. 2
⊢ ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵 ↔ ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) finSupp (0g‘𝑅))) |
125 | 12, 123, 124 | sylanbrc 583 |
1
⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵) |