MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psdmplcl Structured version   Visualization version   GIF version

Theorem psdmplcl 22065
Description: The derivative of a polynomial is a polynomial. (Contributed by SN, 12-Apr-2025.)
Hypotheses
Ref Expression
psdmplcl.p 𝑃 = (𝐼 mPoly 𝑅)
psdmplcl.b 𝐵 = (Base‘𝑃)
psdmplcl.r (𝜑𝑅 ∈ Mnd)
psdmplcl.x (𝜑𝑋𝐼)
psdmplcl.f (𝜑𝐹𝐵)
Assertion
Ref Expression
psdmplcl (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵)

Proof of Theorem psdmplcl
Dummy variables 𝑏 𝑑 𝑖 𝑘 𝑦 𝑧 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
2 eqid 2729 . . 3 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
3 psdmplcl.r . . . 4 (𝜑𝑅 ∈ Mnd)
4 mndmgm 18633 . . . 4 (𝑅 ∈ Mnd → 𝑅 ∈ Mgm)
53, 4syl 17 . . 3 (𝜑𝑅 ∈ Mgm)
6 psdmplcl.x . . 3 (𝜑𝑋𝐼)
7 psdmplcl.p . . . . 5 𝑃 = (𝐼 mPoly 𝑅)
8 psdmplcl.b . . . . 5 𝐵 = (Base‘𝑃)
97, 1, 8, 2mplbasss 21922 . . . 4 𝐵 ⊆ (Base‘(𝐼 mPwSer 𝑅))
10 psdmplcl.f . . . 4 (𝜑𝐹𝐵)
119, 10sselid 3935 . . 3 (𝜑𝐹 ∈ (Base‘(𝐼 mPwSer 𝑅)))
121, 2, 5, 6, 11psdcl 22064 . 2 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ (Base‘(𝐼 mPwSer 𝑅)))
13 eqid 2729 . . . 4 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
141, 2, 13, 6, 11psdval 22062 . . 3 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) = (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
15 ovex 7386 . . . . . . 7 (ℕ0m 𝐼) ∈ V
1615rabex 5281 . . . . . 6 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V
1716a1i 11 . . . . 5 (𝜑 → { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V)
1817mptexd 7164 . . . 4 (𝜑 → (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) ∈ V)
19 fvexd 6841 . . . 4 (𝜑 → (0g𝑅) ∈ V)
20 funmpt 6524 . . . . 5 Fun (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
2120a1i 11 . . . 4 (𝜑 → Fun (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
22 simpr 484 . . . . . . . . 9 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
23 reldmmpl 21913 . . . . . . . . . . . . 13 Rel dom mPoly
247, 8, 23strov2rcl 17146 . . . . . . . . . . . 12 (𝐹𝐵𝐼 ∈ V)
2510, 24syl 17 . . . . . . . . . . 11 (𝜑𝐼 ∈ V)
2613psrbagsn 21986 . . . . . . . . . . 11 (𝐼 ∈ V → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
2725, 26syl 17 . . . . . . . . . 10 (𝜑 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
2827adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
2913psrbagaddcl 21849 . . . . . . . . 9 ((𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
3022, 28, 29syl2anc 584 . . . . . . . 8 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
31 eqidd 2730 . . . . . . . 8 (𝜑 → (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
32 eqid 2729 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
337, 32, 8, 13, 10mplelf 21923 . . . . . . . . 9 (𝜑𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
3433feqmptd 6895 . . . . . . . 8 (𝜑𝐹 = (𝑧 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝐹𝑧)))
35 fveq2 6826 . . . . . . . 8 (𝑧 = (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝐹𝑧) = (𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
3630, 31, 34, 35fmptco 7067 . . . . . . 7 (𝜑 → (𝐹 ∘ (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
37 eqid 2729 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
387, 8, 37, 10mplelsfi 21920 . . . . . . . 8 (𝜑𝐹 finSupp (0g𝑅))
3930fmpttd 7053 . . . . . . . . 9 (𝜑 → (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
40 ovex 7386 . . . . . . . . . . . . . . 15 (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ V
41 eqid 2729 . . . . . . . . . . . . . . 15 (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
4240, 41fnmpti 6629 . . . . . . . . . . . . . 14 (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
4342a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
44 dffn3 6668 . . . . . . . . . . . . 13 ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↔ (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶ran (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
4543, 44sylib 218 . . . . . . . . . . . 12 (𝜑 → (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶ran (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
4645, 39fcod 6681 . . . . . . . . . . 11 (𝜑 → ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∘ (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶ran (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
4746ffnd 6657 . . . . . . . . . 10 (𝜑 → ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∘ (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
48 fnresi 6615 . . . . . . . . . . 11 ( I ↾ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
4948a1i 11 . . . . . . . . . 10 (𝜑 → ( I ↾ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
5013psrbagf 21843 . . . . . . . . . . . . . . . . 17 (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑑:𝐼⟶ℕ0)
5150adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑:𝐼⟶ℕ0)
5251ffvelcdmda 7022 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℕ0)
5352nn0cnd 12465 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℂ)
54 ax-1cn 11086 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
55 0cn 11126 . . . . . . . . . . . . . . . 16 0 ∈ ℂ
5654, 55ifcli 4526 . . . . . . . . . . . . . . 15 if(𝑖 = 𝑋, 1, 0) ∈ ℂ
5756a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℂ)
5853, 57pncand 11494 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − if(𝑖 = 𝑋, 1, 0)) = (𝑑𝑖))
5958mpteq2dva 5188 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑖𝐼 ↦ (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − if(𝑖 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (𝑑𝑖)))
60 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
6127adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
6213psrbagaddcl 21849 . . . . . . . . . . . . . . 15 ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
6360, 61, 62syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
6413psrbagf 21843 . . . . . . . . . . . . . . 15 ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0)
6564ffnd 6657 . . . . . . . . . . . . . 14 ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
6663, 65syl 17 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
67 1ex 11130 . . . . . . . . . . . . . . . 16 1 ∈ V
68 c0ex 11128 . . . . . . . . . . . . . . . 16 0 ∈ V
6967, 68ifex 4529 . . . . . . . . . . . . . . 15 if(𝑦 = 𝑋, 1, 0) ∈ V
70 eqid 2729 . . . . . . . . . . . . . . 15 (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))
7169, 70fnmpti 6629 . . . . . . . . . . . . . 14 (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼
7271a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
7325adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐼 ∈ V)
74 inidm 4180 . . . . . . . . . . . . 13 (𝐼𝐼) = 𝐼
7550ffnd 6657 . . . . . . . . . . . . . . 15 (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑑 Fn 𝐼)
7675adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑 Fn 𝐼)
77 eqidd 2730 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) = (𝑑𝑖))
78 eqeq1 2733 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑖 → (𝑦 = 𝑋𝑖 = 𝑋))
7978ifbid 4502 . . . . . . . . . . . . . . 15 (𝑦 = 𝑖 → if(𝑦 = 𝑋, 1, 0) = if(𝑖 = 𝑋, 1, 0))
80 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → 𝑖𝐼)
8167, 68ifex 4529 . . . . . . . . . . . . . . . 16 if(𝑖 = 𝑋, 1, 0) ∈ V
8281a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ V)
8370, 79, 80, 82fvmptd3 6957 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
8476, 72, 73, 73, 74, 77, 83ofval 7628 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
8566, 72, 73, 73, 74, 84, 83offval 7626 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − if(𝑖 = 𝑋, 1, 0))))
8651feqmptd 6895 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑 = (𝑖𝐼 ↦ (𝑑𝑖)))
8759, 85, 863eqtr4d 2774 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 𝑑)
8830adantlr 715 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
8988fmpttd 7053 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
9089, 60fvco3d 6927 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∘ (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))‘𝑑) = ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))‘((𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))‘𝑑)))
91 eqid 2729 . . . . . . . . . . . . . 14 (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
92 oveq1 7360 . . . . . . . . . . . . . 14 (𝑘 = 𝑑 → (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
93 ovexd 7388 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ V)
9491, 92, 60, 93fvmptd3 6957 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))‘𝑑) = (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
9594fveq2d 6830 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))‘((𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))‘𝑑)) = ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
96 oveq1 7360 . . . . . . . . . . . . 13 (𝑏 = (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
97 ovexd 7388 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ V)
9841, 96, 63, 97fvmptd3 6957 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
9990, 95, 983eqtrd 2768 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∘ (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))‘𝑑) = ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
100 fvresi 7113 . . . . . . . . . . . 12 (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → (( I ↾ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})‘𝑑) = 𝑑)
101100adantl 481 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (( I ↾ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})‘𝑑) = 𝑑)
10287, 99, 1013eqtr4d 2774 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∘ (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))‘𝑑) = (( I ↾ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})‘𝑑))
10347, 49, 102eqfnfvd 6972 . . . . . . . . 9 (𝜑 → ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∘ (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = ( I ↾ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}))
104 fcof1 7228 . . . . . . . . 9 (((𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∘ (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = ( I ↾ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})) → (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}–1-1→{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
10539, 103, 104syl2anc 584 . . . . . . . 8 (𝜑 → (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}–1-1→{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
10638, 105, 19, 10fsuppco 9311 . . . . . . 7 (𝜑 → (𝐹 ∘ (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) finSupp (0g𝑅))
10736, 106eqbrtrrd 5119 . . . . . 6 (𝜑 → (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) finSupp (0g𝑅))
108107fsuppimpd 9278 . . . . 5 (𝜑 → ((𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) supp (0g𝑅)) ∈ Fin)
109 ssidd 3961 . . . . . 6 (𝜑 → ((𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) supp (0g𝑅)) ⊆ ((𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) supp (0g𝑅)))
110 eqid 2729 . . . . . . . 8 (.g𝑅) = (.g𝑅)
11132, 110, 37mulgnn0z 18998 . . . . . . 7 ((𝑅 ∈ Mnd ∧ 𝑛 ∈ ℕ0) → (𝑛(.g𝑅)(0g𝑅)) = (0g𝑅))
1123, 111sylan 580 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → (𝑛(.g𝑅)(0g𝑅)) = (0g𝑅))
11313psrbagf 21843 . . . . . . . . 9 (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑘:𝐼⟶ℕ0)
114113adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑘:𝐼⟶ℕ0)
1156adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑋𝐼)
116114, 115ffvelcdmd 7023 . . . . . . 7 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘𝑋) ∈ ℕ0)
117 peano2nn0 12442 . . . . . . 7 ((𝑘𝑋) ∈ ℕ0 → ((𝑘𝑋) + 1) ∈ ℕ0)
118116, 117syl 17 . . . . . 6 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑘𝑋) + 1) ∈ ℕ0)
119 fvexd 6841 . . . . . 6 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∈ V)
120109, 112, 118, 119, 19suppssov2 8138 . . . . 5 (𝜑 → ((𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) supp (0g𝑅)) ⊆ ((𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) supp (0g𝑅)))
121108, 120ssfid 9170 . . . 4 (𝜑 → ((𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) supp (0g𝑅)) ∈ Fin)
12218, 19, 21, 121isfsuppd 9275 . . 3 (𝜑 → (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) finSupp (0g𝑅))
12314, 122eqbrtrd 5117 . 2 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) finSupp (0g𝑅))
1247, 1, 2, 37, 8mplelbas 21916 . 2 ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵 ↔ ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) finSupp (0g𝑅)))
12512, 123, 124sylanbrc 583 1 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3396  Vcvv 3438  ifcif 4478   class class class wbr 5095  cmpt 5176   I cid 5517  ccnv 5622  ran crn 5624  cres 5625  cima 5626  ccom 5627  Fun wfun 6480   Fn wfn 6481  wf 6482  1-1wf1 6483  cfv 6486  (class class class)co 7353  f cof 7615   supp csupp 8100  m cmap 8760  Fincfn 8879   finSupp cfsupp 9270  cc 11026  0cc0 11028  1c1 11029   + caddc 11031  cmin 11365  cn 12146  0cn0 12402  Basecbs 17138  0gc0g 17361  Mgmcmgm 18530  Mndcmnd 18626  .gcmg 18964   mPwSer cmps 21829   mPoly cmpl 21831   mPSDer cpsd 22033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-seq 13927  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-tset 17198  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mulg 18965  df-psr 21834  df-mpl 21836  df-psd 22059
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator