MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psdmplcl Structured version   Visualization version   GIF version

Theorem psdmplcl 22056
Description: The derivative of a polynomial is a polynomial. (Contributed by SN, 12-Apr-2025.)
Hypotheses
Ref Expression
psdmplcl.p 𝑃 = (𝐼 mPoly 𝑅)
psdmplcl.b 𝐵 = (Base‘𝑃)
psdmplcl.r (𝜑𝑅 ∈ Mnd)
psdmplcl.x (𝜑𝑋𝐼)
psdmplcl.f (𝜑𝐹𝐵)
Assertion
Ref Expression
psdmplcl (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵)

Proof of Theorem psdmplcl
Dummy variables 𝑏 𝑑 𝑖 𝑘 𝑦 𝑧 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . 3 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
2 eqid 2730 . . 3 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
3 psdmplcl.r . . . 4 (𝜑𝑅 ∈ Mnd)
4 mndmgm 18675 . . . 4 (𝑅 ∈ Mnd → 𝑅 ∈ Mgm)
53, 4syl 17 . . 3 (𝜑𝑅 ∈ Mgm)
6 psdmplcl.x . . 3 (𝜑𝑋𝐼)
7 psdmplcl.p . . . . 5 𝑃 = (𝐼 mPoly 𝑅)
8 psdmplcl.b . . . . 5 𝐵 = (Base‘𝑃)
97, 1, 8, 2mplbasss 21913 . . . 4 𝐵 ⊆ (Base‘(𝐼 mPwSer 𝑅))
10 psdmplcl.f . . . 4 (𝜑𝐹𝐵)
119, 10sselid 3947 . . 3 (𝜑𝐹 ∈ (Base‘(𝐼 mPwSer 𝑅)))
121, 2, 5, 6, 11psdcl 22055 . 2 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ (Base‘(𝐼 mPwSer 𝑅)))
13 eqid 2730 . . . 4 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
141, 2, 13, 6, 11psdval 22053 . . 3 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) = (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
15 ovex 7423 . . . . . . 7 (ℕ0m 𝐼) ∈ V
1615rabex 5297 . . . . . 6 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V
1716a1i 11 . . . . 5 (𝜑 → { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V)
1817mptexd 7201 . . . 4 (𝜑 → (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) ∈ V)
19 fvexd 6876 . . . 4 (𝜑 → (0g𝑅) ∈ V)
20 funmpt 6557 . . . . 5 Fun (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
2120a1i 11 . . . 4 (𝜑 → Fun (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
22 simpr 484 . . . . . . . . 9 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
23 reldmmpl 21904 . . . . . . . . . . . . 13 Rel dom mPoly
247, 8, 23strov2rcl 17194 . . . . . . . . . . . 12 (𝐹𝐵𝐼 ∈ V)
2510, 24syl 17 . . . . . . . . . . 11 (𝜑𝐼 ∈ V)
2613psrbagsn 21977 . . . . . . . . . . 11 (𝐼 ∈ V → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
2725, 26syl 17 . . . . . . . . . 10 (𝜑 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
2827adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
2913psrbagaddcl 21840 . . . . . . . . 9 ((𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
3022, 28, 29syl2anc 584 . . . . . . . 8 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
31 eqidd 2731 . . . . . . . 8 (𝜑 → (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
32 eqid 2730 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
337, 32, 8, 13, 10mplelf 21914 . . . . . . . . 9 (𝜑𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
3433feqmptd 6932 . . . . . . . 8 (𝜑𝐹 = (𝑧 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝐹𝑧)))
35 fveq2 6861 . . . . . . . 8 (𝑧 = (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝐹𝑧) = (𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
3630, 31, 34, 35fmptco 7104 . . . . . . 7 (𝜑 → (𝐹 ∘ (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
37 eqid 2730 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
387, 8, 37, 10mplelsfi 21911 . . . . . . . 8 (𝜑𝐹 finSupp (0g𝑅))
3930fmpttd 7090 . . . . . . . . 9 (𝜑 → (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
40 ovex 7423 . . . . . . . . . . . . . . 15 (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ V
41 eqid 2730 . . . . . . . . . . . . . . 15 (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
4240, 41fnmpti 6664 . . . . . . . . . . . . . 14 (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
4342a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
44 dffn3 6703 . . . . . . . . . . . . 13 ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↔ (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶ran (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
4543, 44sylib 218 . . . . . . . . . . . 12 (𝜑 → (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶ran (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
4645, 39fcod 6716 . . . . . . . . . . 11 (𝜑 → ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∘ (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶ran (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
4746ffnd 6692 . . . . . . . . . 10 (𝜑 → ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∘ (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
48 fnresi 6650 . . . . . . . . . . 11 ( I ↾ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
4948a1i 11 . . . . . . . . . 10 (𝜑 → ( I ↾ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
5013psrbagf 21834 . . . . . . . . . . . . . . . . 17 (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑑:𝐼⟶ℕ0)
5150adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑:𝐼⟶ℕ0)
5251ffvelcdmda 7059 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℕ0)
5352nn0cnd 12512 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℂ)
54 ax-1cn 11133 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
55 0cn 11173 . . . . . . . . . . . . . . . 16 0 ∈ ℂ
5654, 55ifcli 4539 . . . . . . . . . . . . . . 15 if(𝑖 = 𝑋, 1, 0) ∈ ℂ
5756a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℂ)
5853, 57pncand 11541 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − if(𝑖 = 𝑋, 1, 0)) = (𝑑𝑖))
5958mpteq2dva 5203 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑖𝐼 ↦ (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − if(𝑖 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (𝑑𝑖)))
60 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
6127adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
6213psrbagaddcl 21840 . . . . . . . . . . . . . . 15 ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
6360, 61, 62syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
6413psrbagf 21834 . . . . . . . . . . . . . . 15 ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0)
6564ffnd 6692 . . . . . . . . . . . . . 14 ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
6663, 65syl 17 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
67 1ex 11177 . . . . . . . . . . . . . . . 16 1 ∈ V
68 c0ex 11175 . . . . . . . . . . . . . . . 16 0 ∈ V
6967, 68ifex 4542 . . . . . . . . . . . . . . 15 if(𝑦 = 𝑋, 1, 0) ∈ V
70 eqid 2730 . . . . . . . . . . . . . . 15 (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))
7169, 70fnmpti 6664 . . . . . . . . . . . . . 14 (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼
7271a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
7325adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐼 ∈ V)
74 inidm 4193 . . . . . . . . . . . . 13 (𝐼𝐼) = 𝐼
7550ffnd 6692 . . . . . . . . . . . . . . 15 (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑑 Fn 𝐼)
7675adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑 Fn 𝐼)
77 eqidd 2731 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) = (𝑑𝑖))
78 eqeq1 2734 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑖 → (𝑦 = 𝑋𝑖 = 𝑋))
7978ifbid 4515 . . . . . . . . . . . . . . 15 (𝑦 = 𝑖 → if(𝑦 = 𝑋, 1, 0) = if(𝑖 = 𝑋, 1, 0))
80 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → 𝑖𝐼)
8167, 68ifex 4542 . . . . . . . . . . . . . . . 16 if(𝑖 = 𝑋, 1, 0) ∈ V
8281a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ V)
8370, 79, 80, 82fvmptd3 6994 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
8476, 72, 73, 73, 74, 77, 83ofval 7667 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
8566, 72, 73, 73, 74, 84, 83offval 7665 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − if(𝑖 = 𝑋, 1, 0))))
8651feqmptd 6932 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑 = (𝑖𝐼 ↦ (𝑑𝑖)))
8759, 85, 863eqtr4d 2775 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 𝑑)
8830adantlr 715 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
8988fmpttd 7090 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
9089, 60fvco3d 6964 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∘ (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))‘𝑑) = ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))‘((𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))‘𝑑)))
91 eqid 2730 . . . . . . . . . . . . . 14 (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
92 oveq1 7397 . . . . . . . . . . . . . 14 (𝑘 = 𝑑 → (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
93 ovexd 7425 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ V)
9491, 92, 60, 93fvmptd3 6994 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))‘𝑑) = (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
9594fveq2d 6865 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))‘((𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))‘𝑑)) = ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
96 oveq1 7397 . . . . . . . . . . . . 13 (𝑏 = (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
97 ovexd 7425 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ V)
9841, 96, 63, 97fvmptd3 6994 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
9990, 95, 983eqtrd 2769 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∘ (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))‘𝑑) = ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
100 fvresi 7150 . . . . . . . . . . . 12 (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → (( I ↾ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})‘𝑑) = 𝑑)
101100adantl 481 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (( I ↾ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})‘𝑑) = 𝑑)
10287, 99, 1013eqtr4d 2775 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∘ (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))‘𝑑) = (( I ↾ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})‘𝑑))
10347, 49, 102eqfnfvd 7009 . . . . . . . . 9 (𝜑 → ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∘ (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = ( I ↾ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}))
104 fcof1 7265 . . . . . . . . 9 (((𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∘ (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = ( I ↾ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})) → (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}–1-1→{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
10539, 103, 104syl2anc 584 . . . . . . . 8 (𝜑 → (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}–1-1→{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
10638, 105, 19, 10fsuppco 9360 . . . . . . 7 (𝜑 → (𝐹 ∘ (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) finSupp (0g𝑅))
10736, 106eqbrtrrd 5134 . . . . . 6 (𝜑 → (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) finSupp (0g𝑅))
108107fsuppimpd 9327 . . . . 5 (𝜑 → ((𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) supp (0g𝑅)) ∈ Fin)
109 ssidd 3973 . . . . . 6 (𝜑 → ((𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) supp (0g𝑅)) ⊆ ((𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) supp (0g𝑅)))
110 eqid 2730 . . . . . . . 8 (.g𝑅) = (.g𝑅)
11132, 110, 37mulgnn0z 19040 . . . . . . 7 ((𝑅 ∈ Mnd ∧ 𝑛 ∈ ℕ0) → (𝑛(.g𝑅)(0g𝑅)) = (0g𝑅))
1123, 111sylan 580 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → (𝑛(.g𝑅)(0g𝑅)) = (0g𝑅))
11313psrbagf 21834 . . . . . . . . 9 (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑘:𝐼⟶ℕ0)
114113adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑘:𝐼⟶ℕ0)
1156adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑋𝐼)
116114, 115ffvelcdmd 7060 . . . . . . 7 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘𝑋) ∈ ℕ0)
117 peano2nn0 12489 . . . . . . 7 ((𝑘𝑋) ∈ ℕ0 → ((𝑘𝑋) + 1) ∈ ℕ0)
118116, 117syl 17 . . . . . 6 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑘𝑋) + 1) ∈ ℕ0)
119 fvexd 6876 . . . . . 6 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∈ V)
120109, 112, 118, 119, 19suppssov2 8180 . . . . 5 (𝜑 → ((𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) supp (0g𝑅)) ⊆ ((𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) supp (0g𝑅)))
121108, 120ssfid 9219 . . . 4 (𝜑 → ((𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) supp (0g𝑅)) ∈ Fin)
12218, 19, 21, 121isfsuppd 9324 . . 3 (𝜑 → (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) finSupp (0g𝑅))
12314, 122eqbrtrd 5132 . 2 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) finSupp (0g𝑅))
1247, 1, 2, 37, 8mplelbas 21907 . 2 ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵 ↔ ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) finSupp (0g𝑅)))
12512, 123, 124sylanbrc 583 1 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  ifcif 4491   class class class wbr 5110  cmpt 5191   I cid 5535  ccnv 5640  ran crn 5642  cres 5643  cima 5644  ccom 5645  Fun wfun 6508   Fn wfn 6509  wf 6510  1-1wf1 6511  cfv 6514  (class class class)co 7390  f cof 7654   supp csupp 8142  m cmap 8802  Fincfn 8921   finSupp cfsupp 9319  cc 11073  0cc0 11075  1c1 11076   + caddc 11078  cmin 11412  cn 12193  0cn0 12449  Basecbs 17186  0gc0g 17409  Mgmcmgm 18572  Mndcmnd 18668  .gcmg 19006   mPwSer cmps 21820   mPoly cmpl 21822   mPSDer cpsd 22024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-seq 13974  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-tset 17246  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mulg 19007  df-psr 21825  df-mpl 21827  df-psd 22050
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator