MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psdmplcl Structured version   Visualization version   GIF version

Theorem psdmplcl 22100
Description: The derivative of a polynomial is a polynomial. (Contributed by SN, 12-Apr-2025.)
Hypotheses
Ref Expression
psdmplcl.p 𝑃 = (𝐼 mPoly 𝑅)
psdmplcl.b 𝐵 = (Base‘𝑃)
psdmplcl.r (𝜑𝑅 ∈ Mnd)
psdmplcl.x (𝜑𝑋𝐼)
psdmplcl.f (𝜑𝐹𝐵)
Assertion
Ref Expression
psdmplcl (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵)

Proof of Theorem psdmplcl
Dummy variables 𝑏 𝑑 𝑖 𝑘 𝑦 𝑧 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . 3 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
2 eqid 2735 . . 3 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
3 psdmplcl.r . . . 4 (𝜑𝑅 ∈ Mnd)
4 mndmgm 18719 . . . 4 (𝑅 ∈ Mnd → 𝑅 ∈ Mgm)
53, 4syl 17 . . 3 (𝜑𝑅 ∈ Mgm)
6 psdmplcl.x . . 3 (𝜑𝑋𝐼)
7 psdmplcl.p . . . . 5 𝑃 = (𝐼 mPoly 𝑅)
8 psdmplcl.b . . . . 5 𝐵 = (Base‘𝑃)
97, 1, 8, 2mplbasss 21957 . . . 4 𝐵 ⊆ (Base‘(𝐼 mPwSer 𝑅))
10 psdmplcl.f . . . 4 (𝜑𝐹𝐵)
119, 10sselid 3956 . . 3 (𝜑𝐹 ∈ (Base‘(𝐼 mPwSer 𝑅)))
121, 2, 5, 6, 11psdcl 22099 . 2 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ (Base‘(𝐼 mPwSer 𝑅)))
13 eqid 2735 . . . 4 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
141, 2, 13, 6, 11psdval 22097 . . 3 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) = (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
15 ovex 7438 . . . . . . 7 (ℕ0m 𝐼) ∈ V
1615rabex 5309 . . . . . 6 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V
1716a1i 11 . . . . 5 (𝜑 → { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V)
1817mptexd 7216 . . . 4 (𝜑 → (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) ∈ V)
19 fvexd 6891 . . . 4 (𝜑 → (0g𝑅) ∈ V)
20 funmpt 6574 . . . . 5 Fun (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
2120a1i 11 . . . 4 (𝜑 → Fun (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
22 simpr 484 . . . . . . . . 9 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
23 reldmmpl 21948 . . . . . . . . . . . . 13 Rel dom mPoly
247, 8, 23strov2rcl 17236 . . . . . . . . . . . 12 (𝐹𝐵𝐼 ∈ V)
2510, 24syl 17 . . . . . . . . . . 11 (𝜑𝐼 ∈ V)
2613psrbagsn 22021 . . . . . . . . . . 11 (𝐼 ∈ V → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
2725, 26syl 17 . . . . . . . . . 10 (𝜑 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
2827adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
2913psrbagaddcl 21884 . . . . . . . . 9 ((𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
3022, 28, 29syl2anc 584 . . . . . . . 8 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
31 eqidd 2736 . . . . . . . 8 (𝜑 → (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
32 eqid 2735 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
337, 32, 8, 13, 10mplelf 21958 . . . . . . . . 9 (𝜑𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
3433feqmptd 6947 . . . . . . . 8 (𝜑𝐹 = (𝑧 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝐹𝑧)))
35 fveq2 6876 . . . . . . . 8 (𝑧 = (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝐹𝑧) = (𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
3630, 31, 34, 35fmptco 7119 . . . . . . 7 (𝜑 → (𝐹 ∘ (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
37 eqid 2735 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
387, 8, 37, 10mplelsfi 21955 . . . . . . . 8 (𝜑𝐹 finSupp (0g𝑅))
3930fmpttd 7105 . . . . . . . . 9 (𝜑 → (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
40 ovex 7438 . . . . . . . . . . . . . . 15 (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ V
41 eqid 2735 . . . . . . . . . . . . . . 15 (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
4240, 41fnmpti 6681 . . . . . . . . . . . . . 14 (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
4342a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
44 dffn3 6718 . . . . . . . . . . . . 13 ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↔ (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶ran (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
4543, 44sylib 218 . . . . . . . . . . . 12 (𝜑 → (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶ran (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
4645, 39fcod 6731 . . . . . . . . . . 11 (𝜑 → ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∘ (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶ran (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
4746ffnd 6707 . . . . . . . . . 10 (𝜑 → ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∘ (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
48 fnresi 6667 . . . . . . . . . . 11 ( I ↾ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
4948a1i 11 . . . . . . . . . 10 (𝜑 → ( I ↾ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
5013psrbagf 21878 . . . . . . . . . . . . . . . . 17 (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑑:𝐼⟶ℕ0)
5150adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑:𝐼⟶ℕ0)
5251ffvelcdmda 7074 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℕ0)
5352nn0cnd 12564 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℂ)
54 ax-1cn 11187 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
55 0cn 11227 . . . . . . . . . . . . . . . 16 0 ∈ ℂ
5654, 55ifcli 4548 . . . . . . . . . . . . . . 15 if(𝑖 = 𝑋, 1, 0) ∈ ℂ
5756a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℂ)
5853, 57pncand 11595 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − if(𝑖 = 𝑋, 1, 0)) = (𝑑𝑖))
5958mpteq2dva 5214 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑖𝐼 ↦ (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − if(𝑖 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (𝑑𝑖)))
60 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
6127adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
6213psrbagaddcl 21884 . . . . . . . . . . . . . . 15 ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
6360, 61, 62syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
6413psrbagf 21878 . . . . . . . . . . . . . . 15 ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0)
6564ffnd 6707 . . . . . . . . . . . . . 14 ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
6663, 65syl 17 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
67 1ex 11231 . . . . . . . . . . . . . . . 16 1 ∈ V
68 c0ex 11229 . . . . . . . . . . . . . . . 16 0 ∈ V
6967, 68ifex 4551 . . . . . . . . . . . . . . 15 if(𝑦 = 𝑋, 1, 0) ∈ V
70 eqid 2735 . . . . . . . . . . . . . . 15 (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))
7169, 70fnmpti 6681 . . . . . . . . . . . . . 14 (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼
7271a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
7325adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐼 ∈ V)
74 inidm 4202 . . . . . . . . . . . . 13 (𝐼𝐼) = 𝐼
7550ffnd 6707 . . . . . . . . . . . . . . 15 (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑑 Fn 𝐼)
7675adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑 Fn 𝐼)
77 eqidd 2736 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) = (𝑑𝑖))
78 eqeq1 2739 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑖 → (𝑦 = 𝑋𝑖 = 𝑋))
7978ifbid 4524 . . . . . . . . . . . . . . 15 (𝑦 = 𝑖 → if(𝑦 = 𝑋, 1, 0) = if(𝑖 = 𝑋, 1, 0))
80 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → 𝑖𝐼)
8167, 68ifex 4551 . . . . . . . . . . . . . . . 16 if(𝑖 = 𝑋, 1, 0) ∈ V
8281a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ V)
8370, 79, 80, 82fvmptd3 7009 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
8476, 72, 73, 73, 74, 77, 83ofval 7682 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
8566, 72, 73, 73, 74, 84, 83offval 7680 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − if(𝑖 = 𝑋, 1, 0))))
8651feqmptd 6947 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑 = (𝑖𝐼 ↦ (𝑑𝑖)))
8759, 85, 863eqtr4d 2780 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 𝑑)
8830adantlr 715 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
8988fmpttd 7105 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
9089, 60fvco3d 6979 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∘ (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))‘𝑑) = ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))‘((𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))‘𝑑)))
91 eqid 2735 . . . . . . . . . . . . . 14 (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
92 oveq1 7412 . . . . . . . . . . . . . 14 (𝑘 = 𝑑 → (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
93 ovexd 7440 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ V)
9491, 92, 60, 93fvmptd3 7009 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))‘𝑑) = (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
9594fveq2d 6880 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))‘((𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))‘𝑑)) = ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
96 oveq1 7412 . . . . . . . . . . . . 13 (𝑏 = (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
97 ovexd 7440 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ V)
9841, 96, 63, 97fvmptd3 7009 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
9990, 95, 983eqtrd 2774 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∘ (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))‘𝑑) = ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
100 fvresi 7165 . . . . . . . . . . . 12 (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → (( I ↾ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})‘𝑑) = 𝑑)
101100adantl 481 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (( I ↾ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})‘𝑑) = 𝑑)
10287, 99, 1013eqtr4d 2780 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∘ (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))‘𝑑) = (( I ↾ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})‘𝑑))
10347, 49, 102eqfnfvd 7024 . . . . . . . . 9 (𝜑 → ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∘ (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = ( I ↾ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}))
104 fcof1 7280 . . . . . . . . 9 (((𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑏f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∘ (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = ( I ↾ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})) → (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}–1-1→{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
10539, 103, 104syl2anc 584 . . . . . . . 8 (𝜑 → (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}–1-1→{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
10638, 105, 19, 10fsuppco 9414 . . . . . . 7 (𝜑 → (𝐹 ∘ (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) finSupp (0g𝑅))
10736, 106eqbrtrrd 5143 . . . . . 6 (𝜑 → (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) finSupp (0g𝑅))
108107fsuppimpd 9381 . . . . 5 (𝜑 → ((𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) supp (0g𝑅)) ∈ Fin)
109 ssidd 3982 . . . . . 6 (𝜑 → ((𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) supp (0g𝑅)) ⊆ ((𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) supp (0g𝑅)))
110 eqid 2735 . . . . . . . 8 (.g𝑅) = (.g𝑅)
11132, 110, 37mulgnn0z 19084 . . . . . . 7 ((𝑅 ∈ Mnd ∧ 𝑛 ∈ ℕ0) → (𝑛(.g𝑅)(0g𝑅)) = (0g𝑅))
1123, 111sylan 580 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → (𝑛(.g𝑅)(0g𝑅)) = (0g𝑅))
11313psrbagf 21878 . . . . . . . . 9 (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑘:𝐼⟶ℕ0)
114113adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑘:𝐼⟶ℕ0)
1156adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑋𝐼)
116114, 115ffvelcdmd 7075 . . . . . . 7 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘𝑋) ∈ ℕ0)
117 peano2nn0 12541 . . . . . . 7 ((𝑘𝑋) ∈ ℕ0 → ((𝑘𝑋) + 1) ∈ ℕ0)
118116, 117syl 17 . . . . . 6 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑘𝑋) + 1) ∈ ℕ0)
119 fvexd 6891 . . . . . 6 ((𝜑𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∈ V)
120109, 112, 118, 119, 19suppssov2 8197 . . . . 5 (𝜑 → ((𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) supp (0g𝑅)) ⊆ ((𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) supp (0g𝑅)))
121108, 120ssfid 9273 . . . 4 (𝜑 → ((𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) supp (0g𝑅)) ∈ Fin)
12218, 19, 21, 121isfsuppd 9378 . . 3 (𝜑 → (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) finSupp (0g𝑅))
12314, 122eqbrtrd 5141 . 2 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) finSupp (0g𝑅))
1247, 1, 2, 37, 8mplelbas 21951 . 2 ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵 ↔ ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) finSupp (0g𝑅)))
12512, 123, 124sylanbrc 583 1 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {crab 3415  Vcvv 3459  ifcif 4500   class class class wbr 5119  cmpt 5201   I cid 5547  ccnv 5653  ran crn 5655  cres 5656  cima 5657  ccom 5658  Fun wfun 6525   Fn wfn 6526  wf 6527  1-1wf1 6528  cfv 6531  (class class class)co 7405  f cof 7669   supp csupp 8159  m cmap 8840  Fincfn 8959   finSupp cfsupp 9373  cc 11127  0cc0 11129  1c1 11130   + caddc 11132  cmin 11466  cn 12240  0cn0 12501  Basecbs 17228  0gc0g 17453  Mgmcmgm 18616  Mndcmnd 18712  .gcmg 19050   mPwSer cmps 21864   mPoly cmpl 21866   mPSDer cpsd 22068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-seq 14020  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-tset 17290  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mulg 19051  df-psr 21869  df-mpl 21871  df-psd 22094
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator