Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimconst | Structured version Visualization version GIF version |
Description: A constant sequence converges to its value, w.r.t. the standard topology on the extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
xlimconst.p | ⊢ Ⅎ𝑘𝜑 |
xlimconst.k | ⊢ Ⅎ𝑘𝐹 |
xlimconst.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
xlimconst.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
xlimconst.f | ⊢ (𝜑 → 𝐹 Fn 𝑍) |
xlimconst.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xlimconst.e | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
Ref | Expression |
---|---|
xlimconst | ⊢ (𝜑 → 𝐹~~>*𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xlimconst.p | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
2 | xlimconst.k | . . . 4 ⊢ Ⅎ𝑘𝐹 | |
3 | xlimconst.f | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝑍) | |
4 | xlimconst.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
5 | xlimconst.e | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) | |
6 | 1, 2, 3, 4, 5 | fconst7 42701 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑍 × {𝐴})) |
7 | letopon 22264 | . . . 4 ⊢ (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) | |
8 | xlimconst.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
9 | xlimconst.z | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
10 | 9 | lmconst 22320 | . . . 4 ⊢ (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ 𝐴 ∈ ℝ* ∧ 𝑀 ∈ ℤ) → (𝑍 × {𝐴})(⇝𝑡‘(ordTop‘ ≤ ))𝐴) |
11 | 7, 4, 8, 10 | mp3an2i 1464 | . . 3 ⊢ (𝜑 → (𝑍 × {𝐴})(⇝𝑡‘(ordTop‘ ≤ ))𝐴) |
12 | 6, 11 | eqbrtrd 5092 | . 2 ⊢ (𝜑 → 𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴) |
13 | df-xlim 43250 | . . 3 ⊢ ~~>* = (⇝𝑡‘(ordTop‘ ≤ )) | |
14 | 13 | breqi 5076 | . 2 ⊢ (𝐹~~>*𝐴 ↔ 𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴) |
15 | 12, 14 | sylibr 233 | 1 ⊢ (𝜑 → 𝐹~~>*𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 Ⅎwnfc 2886 {csn 4558 class class class wbr 5070 × cxp 5578 Fn wfn 6413 ‘cfv 6418 ℝ*cxr 10939 ≤ cle 10941 ℤcz 12249 ℤ≥cuz 12511 ordTopcordt 17127 TopOnctopon 21967 ⇝𝑡clm 22285 ~~>*clsxlim 43249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-1o 8267 df-er 8456 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fi 9100 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-neg 11138 df-z 12250 df-uz 12512 df-topgen 17071 df-ordt 17129 df-ps 18199 df-tsr 18200 df-top 21951 df-topon 21968 df-bases 22004 df-lm 22288 df-xlim 43250 |
This theorem is referenced by: xlimconst2 43266 |
Copyright terms: Public domain | W3C validator |