| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimconst | Structured version Visualization version GIF version | ||
| Description: A constant sequence converges to its value, w.r.t. the standard topology on the extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| Ref | Expression |
|---|---|
| xlimconst.p | ⊢ Ⅎ𝑘𝜑 |
| xlimconst.k | ⊢ Ⅎ𝑘𝐹 |
| xlimconst.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| xlimconst.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| xlimconst.f | ⊢ (𝜑 → 𝐹 Fn 𝑍) |
| xlimconst.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xlimconst.e | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
| Ref | Expression |
|---|---|
| xlimconst | ⊢ (𝜑 → 𝐹~~>*𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xlimconst.p | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
| 2 | xlimconst.k | . . . 4 ⊢ Ⅎ𝑘𝐹 | |
| 3 | xlimconst.f | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝑍) | |
| 4 | xlimconst.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 5 | xlimconst.e | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) | |
| 6 | 1, 2, 3, 4, 5 | fconst7 45385 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑍 × {𝐴})) |
| 7 | letopon 23121 | . . . 4 ⊢ (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) | |
| 8 | xlimconst.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 9 | xlimconst.z | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 10 | 9 | lmconst 23177 | . . . 4 ⊢ (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ 𝐴 ∈ ℝ* ∧ 𝑀 ∈ ℤ) → (𝑍 × {𝐴})(⇝𝑡‘(ordTop‘ ≤ ))𝐴) |
| 11 | 7, 4, 8, 10 | mp3an2i 1468 | . . 3 ⊢ (𝜑 → (𝑍 × {𝐴})(⇝𝑡‘(ordTop‘ ≤ ))𝐴) |
| 12 | 6, 11 | eqbrtrd 5115 | . 2 ⊢ (𝜑 → 𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴) |
| 13 | df-xlim 45941 | . . 3 ⊢ ~~>* = (⇝𝑡‘(ordTop‘ ≤ )) | |
| 14 | 13 | breqi 5099 | . 2 ⊢ (𝐹~~>*𝐴 ↔ 𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴) |
| 15 | 12, 14 | sylibr 234 | 1 ⊢ (𝜑 → 𝐹~~>*𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2113 Ⅎwnfc 2880 {csn 4575 class class class wbr 5093 × cxp 5617 Fn wfn 6481 ‘cfv 6486 ℝ*cxr 11152 ≤ cle 11154 ℤcz 12475 ℤ≥cuz 12738 ordTopcordt 17405 TopOnctopon 22826 ⇝𝑡clm 23142 ~~>*clsxlim 45940 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-pre-lttri 11087 ax-pre-lttrn 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-1o 8391 df-2o 8392 df-er 8628 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fi 9302 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-neg 11354 df-z 12476 df-uz 12739 df-topgen 17349 df-ordt 17407 df-ps 18474 df-tsr 18475 df-top 22810 df-topon 22827 df-bases 22862 df-lm 23145 df-xlim 45941 |
| This theorem is referenced by: xlimconst2 45957 |
| Copyright terms: Public domain | W3C validator |