Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimconst | Structured version Visualization version GIF version |
Description: A constant sequence converges to its value, w.r.t. the standard topology on the extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
xlimconst.p | ⊢ Ⅎ𝑘𝜑 |
xlimconst.k | ⊢ Ⅎ𝑘𝐹 |
xlimconst.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
xlimconst.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
xlimconst.f | ⊢ (𝜑 → 𝐹 Fn 𝑍) |
xlimconst.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xlimconst.e | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
Ref | Expression |
---|---|
xlimconst | ⊢ (𝜑 → 𝐹~~>*𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xlimconst.p | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
2 | xlimconst.k | . . . 4 ⊢ Ⅎ𝑘𝐹 | |
3 | xlimconst.f | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝑍) | |
4 | xlimconst.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
5 | xlimconst.e | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) | |
6 | 1, 2, 3, 4, 5 | fconst7 42272 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑍 × {𝐴})) |
7 | letopon 21905 | . . . 4 ⊢ (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) | |
8 | xlimconst.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
9 | xlimconst.z | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
10 | 9 | lmconst 21961 | . . . 4 ⊢ (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ 𝐴 ∈ ℝ* ∧ 𝑀 ∈ ℤ) → (𝑍 × {𝐴})(⇝𝑡‘(ordTop‘ ≤ ))𝐴) |
11 | 7, 4, 8, 10 | mp3an2i 1463 | . . 3 ⊢ (𝜑 → (𝑍 × {𝐴})(⇝𝑡‘(ordTop‘ ≤ ))𝐴) |
12 | 6, 11 | eqbrtrd 5054 | . 2 ⊢ (𝜑 → 𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴) |
13 | df-xlim 42827 | . . 3 ⊢ ~~>* = (⇝𝑡‘(ordTop‘ ≤ )) | |
14 | 13 | breqi 5038 | . 2 ⊢ (𝐹~~>*𝐴 ↔ 𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴) |
15 | 12, 14 | sylibr 237 | 1 ⊢ (𝜑 → 𝐹~~>*𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 Ⅎwnf 1785 ∈ wcel 2111 Ⅎwnfc 2899 {csn 4522 class class class wbr 5032 × cxp 5522 Fn wfn 6330 ‘cfv 6335 ℝ*cxr 10712 ≤ cle 10714 ℤcz 12020 ℤ≥cuz 12282 ordTopcordt 16830 TopOnctopon 21610 ⇝𝑡clm 21926 ~~>*clsxlim 42826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-pre-lttri 10649 ax-pre-lttrn 10650 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-1o 8112 df-er 8299 df-pm 8419 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-fi 8908 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-neg 10911 df-z 12021 df-uz 12283 df-topgen 16775 df-ordt 16832 df-ps 17876 df-tsr 17877 df-top 21594 df-topon 21611 df-bases 21646 df-lm 21929 df-xlim 42827 |
This theorem is referenced by: xlimconst2 42843 |
Copyright terms: Public domain | W3C validator |