| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimconst | Structured version Visualization version GIF version | ||
| Description: A constant sequence converges to its value, w.r.t. the standard topology on the extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| Ref | Expression |
|---|---|
| xlimconst.p | ⊢ Ⅎ𝑘𝜑 |
| xlimconst.k | ⊢ Ⅎ𝑘𝐹 |
| xlimconst.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| xlimconst.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| xlimconst.f | ⊢ (𝜑 → 𝐹 Fn 𝑍) |
| xlimconst.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xlimconst.e | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
| Ref | Expression |
|---|---|
| xlimconst | ⊢ (𝜑 → 𝐹~~>*𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xlimconst.p | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
| 2 | xlimconst.k | . . . 4 ⊢ Ⅎ𝑘𝐹 | |
| 3 | xlimconst.f | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝑍) | |
| 4 | xlimconst.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 5 | xlimconst.e | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) | |
| 6 | 1, 2, 3, 4, 5 | fconst7 45300 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑍 × {𝐴})) |
| 7 | letopon 23118 | . . . 4 ⊢ (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) | |
| 8 | xlimconst.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 9 | xlimconst.z | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 10 | 9 | lmconst 23174 | . . . 4 ⊢ (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ 𝐴 ∈ ℝ* ∧ 𝑀 ∈ ℤ) → (𝑍 × {𝐴})(⇝𝑡‘(ordTop‘ ≤ ))𝐴) |
| 11 | 7, 4, 8, 10 | mp3an2i 1468 | . . 3 ⊢ (𝜑 → (𝑍 × {𝐴})(⇝𝑡‘(ordTop‘ ≤ ))𝐴) |
| 12 | 6, 11 | eqbrtrd 5113 | . 2 ⊢ (𝜑 → 𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴) |
| 13 | df-xlim 45856 | . . 3 ⊢ ~~>* = (⇝𝑡‘(ordTop‘ ≤ )) | |
| 14 | 13 | breqi 5097 | . 2 ⊢ (𝐹~~>*𝐴 ↔ 𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴) |
| 15 | 12, 14 | sylibr 234 | 1 ⊢ (𝜑 → 𝐹~~>*𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 Ⅎwnfc 2879 {csn 4576 class class class wbr 5091 × cxp 5614 Fn wfn 6476 ‘cfv 6481 ℝ*cxr 11142 ≤ cle 11144 ℤcz 12465 ℤ≥cuz 12729 ordTopcordt 17400 TopOnctopon 22823 ⇝𝑡clm 23139 ~~>*clsxlim 45855 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-pre-lttri 11077 ax-pre-lttrn 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-1o 8385 df-2o 8386 df-er 8622 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fi 9295 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-neg 11344 df-z 12466 df-uz 12730 df-topgen 17344 df-ordt 17402 df-ps 18469 df-tsr 18470 df-top 22807 df-topon 22824 df-bases 22859 df-lm 23142 df-xlim 45856 |
| This theorem is referenced by: xlimconst2 45872 |
| Copyright terms: Public domain | W3C validator |