Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimconst Structured version   Visualization version   GIF version

Theorem xlimconst 42833
Description: A constant sequence converges to its value, w.r.t. the standard topology on the extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimconst.p 𝑘𝜑
xlimconst.k 𝑘𝐹
xlimconst.m (𝜑𝑀 ∈ ℤ)
xlimconst.z 𝑍 = (ℤ𝑀)
xlimconst.f (𝜑𝐹 Fn 𝑍)
xlimconst.a (𝜑𝐴 ∈ ℝ*)
xlimconst.e ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
Assertion
Ref Expression
xlimconst (𝜑𝐹~~>*𝐴)
Distinct variable groups:   𝐴,𝑘   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐹(𝑘)   𝑀(𝑘)

Proof of Theorem xlimconst
StepHypRef Expression
1 xlimconst.p . . . 4 𝑘𝜑
2 xlimconst.k . . . 4 𝑘𝐹
3 xlimconst.f . . . 4 (𝜑𝐹 Fn 𝑍)
4 xlimconst.a . . . 4 (𝜑𝐴 ∈ ℝ*)
5 xlimconst.e . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
61, 2, 3, 4, 5fconst7 42272 . . 3 (𝜑𝐹 = (𝑍 × {𝐴}))
7 letopon 21905 . . . 4 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
8 xlimconst.m . . . 4 (𝜑𝑀 ∈ ℤ)
9 xlimconst.z . . . . 5 𝑍 = (ℤ𝑀)
109lmconst 21961 . . . 4 (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ 𝐴 ∈ ℝ*𝑀 ∈ ℤ) → (𝑍 × {𝐴})(⇝𝑡‘(ordTop‘ ≤ ))𝐴)
117, 4, 8, 10mp3an2i 1463 . . 3 (𝜑 → (𝑍 × {𝐴})(⇝𝑡‘(ordTop‘ ≤ ))𝐴)
126, 11eqbrtrd 5054 . 2 (𝜑𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴)
13 df-xlim 42827 . . 3 ~~>* = (⇝𝑡‘(ordTop‘ ≤ ))
1413breqi 5038 . 2 (𝐹~~>*𝐴𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴)
1512, 14sylibr 237 1 (𝜑𝐹~~>*𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wnf 1785  wcel 2111  wnfc 2899  {csn 4522   class class class wbr 5032   × cxp 5522   Fn wfn 6330  cfv 6335  *cxr 10712  cle 10714  cz 12020  cuz 12282  ordTopcordt 16830  TopOnctopon 21610  𝑡clm 21926  ~~>*clsxlim 42826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-pre-lttri 10649  ax-pre-lttrn 10650
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-1o 8112  df-er 8299  df-pm 8419  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-fi 8908  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-neg 10911  df-z 12021  df-uz 12283  df-topgen 16775  df-ordt 16832  df-ps 17876  df-tsr 17877  df-top 21594  df-topon 21611  df-bases 21646  df-lm 21929  df-xlim 42827
This theorem is referenced by:  xlimconst2  42843
  Copyright terms: Public domain W3C validator