Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimconst Structured version   Visualization version   GIF version

Theorem xlimconst 45830
Description: A constant sequence converges to its value, w.r.t. the standard topology on the extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimconst.p 𝑘𝜑
xlimconst.k 𝑘𝐹
xlimconst.m (𝜑𝑀 ∈ ℤ)
xlimconst.z 𝑍 = (ℤ𝑀)
xlimconst.f (𝜑𝐹 Fn 𝑍)
xlimconst.a (𝜑𝐴 ∈ ℝ*)
xlimconst.e ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
Assertion
Ref Expression
xlimconst (𝜑𝐹~~>*𝐴)
Distinct variable groups:   𝐴,𝑘   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐹(𝑘)   𝑀(𝑘)

Proof of Theorem xlimconst
StepHypRef Expression
1 xlimconst.p . . . 4 𝑘𝜑
2 xlimconst.k . . . 4 𝑘𝐹
3 xlimconst.f . . . 4 (𝜑𝐹 Fn 𝑍)
4 xlimconst.a . . . 4 (𝜑𝐴 ∈ ℝ*)
5 xlimconst.e . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
61, 2, 3, 4, 5fconst7 45265 . . 3 (𝜑𝐹 = (𝑍 × {𝐴}))
7 letopon 23099 . . . 4 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
8 xlimconst.m . . . 4 (𝜑𝑀 ∈ ℤ)
9 xlimconst.z . . . . 5 𝑍 = (ℤ𝑀)
109lmconst 23155 . . . 4 (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ 𝐴 ∈ ℝ*𝑀 ∈ ℤ) → (𝑍 × {𝐴})(⇝𝑡‘(ordTop‘ ≤ ))𝐴)
117, 4, 8, 10mp3an2i 1468 . . 3 (𝜑 → (𝑍 × {𝐴})(⇝𝑡‘(ordTop‘ ≤ ))𝐴)
126, 11eqbrtrd 5132 . 2 (𝜑𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴)
13 df-xlim 45824 . . 3 ~~>* = (⇝𝑡‘(ordTop‘ ≤ ))
1413breqi 5116 . 2 (𝐹~~>*𝐴𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴)
1512, 14sylibr 234 1 (𝜑𝐹~~>*𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wnfc 2877  {csn 4592   class class class wbr 5110   × cxp 5639   Fn wfn 6509  cfv 6514  *cxr 11214  cle 11216  cz 12536  cuz 12800  ordTopcordt 17469  TopOnctopon 22804  𝑡clm 23120  ~~>*clsxlim 45823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-pre-lttri 11149  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-1o 8437  df-2o 8438  df-er 8674  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-neg 11415  df-z 12537  df-uz 12801  df-topgen 17413  df-ordt 17471  df-ps 18532  df-tsr 18533  df-top 22788  df-topon 22805  df-bases 22840  df-lm 23123  df-xlim 45824
This theorem is referenced by:  xlimconst2  45840
  Copyright terms: Public domain W3C validator