Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimconst Structured version   Visualization version   GIF version

Theorem xlimconst 45862
Description: A constant sequence converges to its value, w.r.t. the standard topology on the extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimconst.p 𝑘𝜑
xlimconst.k 𝑘𝐹
xlimconst.m (𝜑𝑀 ∈ ℤ)
xlimconst.z 𝑍 = (ℤ𝑀)
xlimconst.f (𝜑𝐹 Fn 𝑍)
xlimconst.a (𝜑𝐴 ∈ ℝ*)
xlimconst.e ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
Assertion
Ref Expression
xlimconst (𝜑𝐹~~>*𝐴)
Distinct variable groups:   𝐴,𝑘   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐹(𝑘)   𝑀(𝑘)

Proof of Theorem xlimconst
StepHypRef Expression
1 xlimconst.p . . . 4 𝑘𝜑
2 xlimconst.k . . . 4 𝑘𝐹
3 xlimconst.f . . . 4 (𝜑𝐹 Fn 𝑍)
4 xlimconst.a . . . 4 (𝜑𝐴 ∈ ℝ*)
5 xlimconst.e . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
61, 2, 3, 4, 5fconst7 45300 . . 3 (𝜑𝐹 = (𝑍 × {𝐴}))
7 letopon 23118 . . . 4 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
8 xlimconst.m . . . 4 (𝜑𝑀 ∈ ℤ)
9 xlimconst.z . . . . 5 𝑍 = (ℤ𝑀)
109lmconst 23174 . . . 4 (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ 𝐴 ∈ ℝ*𝑀 ∈ ℤ) → (𝑍 × {𝐴})(⇝𝑡‘(ordTop‘ ≤ ))𝐴)
117, 4, 8, 10mp3an2i 1468 . . 3 (𝜑 → (𝑍 × {𝐴})(⇝𝑡‘(ordTop‘ ≤ ))𝐴)
126, 11eqbrtrd 5113 . 2 (𝜑𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴)
13 df-xlim 45856 . . 3 ~~>* = (⇝𝑡‘(ordTop‘ ≤ ))
1413breqi 5097 . 2 (𝐹~~>*𝐴𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴)
1512, 14sylibr 234 1 (𝜑𝐹~~>*𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wnf 1784  wcel 2111  wnfc 2879  {csn 4576   class class class wbr 5091   × cxp 5614   Fn wfn 6476  cfv 6481  *cxr 11142  cle 11144  cz 12465  cuz 12729  ordTopcordt 17400  TopOnctopon 22823  𝑡clm 23139  ~~>*clsxlim 45855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-pre-lttri 11077  ax-pre-lttrn 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-1o 8385  df-2o 8386  df-er 8622  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fi 9295  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-neg 11344  df-z 12466  df-uz 12730  df-topgen 17344  df-ordt 17402  df-ps 18469  df-tsr 18470  df-top 22807  df-topon 22824  df-bases 22859  df-lm 23142  df-xlim 45856
This theorem is referenced by:  xlimconst2  45872
  Copyright terms: Public domain W3C validator