| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimconst | Structured version Visualization version GIF version | ||
| Description: A constant sequence converges to its value, w.r.t. the standard topology on the extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| Ref | Expression |
|---|---|
| xlimconst.p | ⊢ Ⅎ𝑘𝜑 |
| xlimconst.k | ⊢ Ⅎ𝑘𝐹 |
| xlimconst.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| xlimconst.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| xlimconst.f | ⊢ (𝜑 → 𝐹 Fn 𝑍) |
| xlimconst.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xlimconst.e | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
| Ref | Expression |
|---|---|
| xlimconst | ⊢ (𝜑 → 𝐹~~>*𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xlimconst.p | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
| 2 | xlimconst.k | . . . 4 ⊢ Ⅎ𝑘𝐹 | |
| 3 | xlimconst.f | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝑍) | |
| 4 | xlimconst.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 5 | xlimconst.e | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) | |
| 6 | 1, 2, 3, 4, 5 | fconst7 45236 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑍 × {𝐴})) |
| 7 | letopon 23141 | . . . 4 ⊢ (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) | |
| 8 | xlimconst.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 9 | xlimconst.z | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 10 | 9 | lmconst 23197 | . . . 4 ⊢ (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ 𝐴 ∈ ℝ* ∧ 𝑀 ∈ ℤ) → (𝑍 × {𝐴})(⇝𝑡‘(ordTop‘ ≤ ))𝐴) |
| 11 | 7, 4, 8, 10 | mp3an2i 1468 | . . 3 ⊢ (𝜑 → (𝑍 × {𝐴})(⇝𝑡‘(ordTop‘ ≤ ))𝐴) |
| 12 | 6, 11 | eqbrtrd 5141 | . 2 ⊢ (𝜑 → 𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴) |
| 13 | df-xlim 45796 | . . 3 ⊢ ~~>* = (⇝𝑡‘(ordTop‘ ≤ )) | |
| 14 | 13 | breqi 5125 | . 2 ⊢ (𝐹~~>*𝐴 ↔ 𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴) |
| 15 | 12, 14 | sylibr 234 | 1 ⊢ (𝜑 → 𝐹~~>*𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 Ⅎwnfc 2883 {csn 4601 class class class wbr 5119 × cxp 5652 Fn wfn 6525 ‘cfv 6530 ℝ*cxr 11266 ≤ cle 11268 ℤcz 12586 ℤ≥cuz 12850 ordTopcordt 17511 TopOnctopon 22846 ⇝𝑡clm 23162 ~~>*clsxlim 45795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-pre-lttri 11201 ax-pre-lttrn 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-1o 8478 df-2o 8479 df-er 8717 df-pm 8841 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fi 9421 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-neg 11467 df-z 12587 df-uz 12851 df-topgen 17455 df-ordt 17513 df-ps 18574 df-tsr 18575 df-top 22830 df-topon 22847 df-bases 22882 df-lm 23165 df-xlim 45796 |
| This theorem is referenced by: xlimconst2 45812 |
| Copyright terms: Public domain | W3C validator |