MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimtopon Structured version   Visualization version   GIF version

Theorem flimtopon 23695
Description: Reverse closure for the limit point predicate. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
flimtopon (𝐴 ∈ (𝐽 fLim 𝐹) β†’ (𝐽 ∈ (TopOnβ€˜π‘‹) ↔ 𝐹 ∈ (Filβ€˜π‘‹)))

Proof of Theorem flimtopon
StepHypRef Expression
1 flimtop 23690 . . 3 (𝐴 ∈ (𝐽 fLim 𝐹) β†’ 𝐽 ∈ Top)
2 istopon 22635 . . . 4 (𝐽 ∈ (TopOnβ€˜π‘‹) ↔ (𝐽 ∈ Top ∧ 𝑋 = βˆͺ 𝐽))
32baib 535 . . 3 (𝐽 ∈ Top β†’ (𝐽 ∈ (TopOnβ€˜π‘‹) ↔ 𝑋 = βˆͺ 𝐽))
41, 3syl 17 . 2 (𝐴 ∈ (𝐽 fLim 𝐹) β†’ (𝐽 ∈ (TopOnβ€˜π‘‹) ↔ 𝑋 = βˆͺ 𝐽))
5 eqid 2731 . . . . 5 βˆͺ 𝐽 = βˆͺ 𝐽
65flimfil 23694 . . . 4 (𝐴 ∈ (𝐽 fLim 𝐹) β†’ 𝐹 ∈ (Filβ€˜βˆͺ 𝐽))
7 fveq2 6892 . . . . 5 (𝑋 = βˆͺ 𝐽 β†’ (Filβ€˜π‘‹) = (Filβ€˜βˆͺ 𝐽))
87eleq2d 2818 . . . 4 (𝑋 = βˆͺ 𝐽 β†’ (𝐹 ∈ (Filβ€˜π‘‹) ↔ 𝐹 ∈ (Filβ€˜βˆͺ 𝐽)))
96, 8syl5ibrcom 246 . . 3 (𝐴 ∈ (𝐽 fLim 𝐹) β†’ (𝑋 = βˆͺ 𝐽 β†’ 𝐹 ∈ (Filβ€˜π‘‹)))
10 filunibas 23606 . . . . 5 (𝐹 ∈ (Filβ€˜βˆͺ 𝐽) β†’ βˆͺ 𝐹 = βˆͺ 𝐽)
116, 10syl 17 . . . 4 (𝐴 ∈ (𝐽 fLim 𝐹) β†’ βˆͺ 𝐹 = βˆͺ 𝐽)
12 filunibas 23606 . . . . 5 (𝐹 ∈ (Filβ€˜π‘‹) β†’ βˆͺ 𝐹 = 𝑋)
1312eqeq1d 2733 . . . 4 (𝐹 ∈ (Filβ€˜π‘‹) β†’ (βˆͺ 𝐹 = βˆͺ 𝐽 ↔ 𝑋 = βˆͺ 𝐽))
1411, 13syl5ibcom 244 . . 3 (𝐴 ∈ (𝐽 fLim 𝐹) β†’ (𝐹 ∈ (Filβ€˜π‘‹) β†’ 𝑋 = βˆͺ 𝐽))
159, 14impbid 211 . 2 (𝐴 ∈ (𝐽 fLim 𝐹) β†’ (𝑋 = βˆͺ 𝐽 ↔ 𝐹 ∈ (Filβ€˜π‘‹)))
164, 15bitrd 278 1 (𝐴 ∈ (𝐽 fLim 𝐹) β†’ (𝐽 ∈ (TopOnβ€˜π‘‹) ↔ 𝐹 ∈ (Filβ€˜π‘‹)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   = wceq 1540   ∈ wcel 2105  βˆͺ cuni 4909  β€˜cfv 6544  (class class class)co 7412  Topctop 22616  TopOnctopon 22633  Filcfil 23570   fLim cflim 23659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7415  df-oprab 7416  df-mpo 7417  df-fbas 21142  df-top 22617  df-topon 22634  df-nei 22823  df-fil 23571  df-flim 23664
This theorem is referenced by:  fclsfnflim  23752
  Copyright terms: Public domain W3C validator