MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimtopon Structured version   Visualization version   GIF version

Theorem flimtopon 23999
Description: Reverse closure for the limit point predicate. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
flimtopon (𝐴 ∈ (𝐽 fLim 𝐹) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐹 ∈ (Fil‘𝑋)))

Proof of Theorem flimtopon
StepHypRef Expression
1 flimtop 23994 . . 3 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top)
2 istopon 22939 . . . 4 (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝐽))
32baib 535 . . 3 (𝐽 ∈ Top → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝑋 = 𝐽))
41, 3syl 17 . 2 (𝐴 ∈ (𝐽 fLim 𝐹) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝑋 = 𝐽))
5 eqid 2740 . . . . 5 𝐽 = 𝐽
65flimfil 23998 . . . 4 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘ 𝐽))
7 fveq2 6920 . . . . 5 (𝑋 = 𝐽 → (Fil‘𝑋) = (Fil‘ 𝐽))
87eleq2d 2830 . . . 4 (𝑋 = 𝐽 → (𝐹 ∈ (Fil‘𝑋) ↔ 𝐹 ∈ (Fil‘ 𝐽)))
96, 8syl5ibrcom 247 . . 3 (𝐴 ∈ (𝐽 fLim 𝐹) → (𝑋 = 𝐽𝐹 ∈ (Fil‘𝑋)))
10 filunibas 23910 . . . . 5 (𝐹 ∈ (Fil‘ 𝐽) → 𝐹 = 𝐽)
116, 10syl 17 . . . 4 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 = 𝐽)
12 filunibas 23910 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → 𝐹 = 𝑋)
1312eqeq1d 2742 . . . 4 (𝐹 ∈ (Fil‘𝑋) → ( 𝐹 = 𝐽𝑋 = 𝐽))
1411, 13syl5ibcom 245 . . 3 (𝐴 ∈ (𝐽 fLim 𝐹) → (𝐹 ∈ (Fil‘𝑋) → 𝑋 = 𝐽))
159, 14impbid 212 . 2 (𝐴 ∈ (𝐽 fLim 𝐹) → (𝑋 = 𝐽𝐹 ∈ (Fil‘𝑋)))
164, 15bitrd 279 1 (𝐴 ∈ (𝐽 fLim 𝐹) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐹 ∈ (Fil‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108   cuni 4931  cfv 6573  (class class class)co 7448  Topctop 22920  TopOnctopon 22937  Filcfil 23874   fLim cflim 23963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-fbas 21384  df-top 22921  df-topon 22938  df-nei 23127  df-fil 23875  df-flim 23968
This theorem is referenced by:  fclsfnflim  24056
  Copyright terms: Public domain W3C validator