|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > flimtopon | Structured version Visualization version GIF version | ||
| Description: Reverse closure for the limit point predicate. (Contributed by Mario Carneiro, 26-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| flimtopon | ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐹 ∈ (Fil‘𝑋))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | flimtop 23974 | . . 3 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top) | |
| 2 | istopon 22919 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽)) | |
| 3 | 2 | baib 535 | . . 3 ⊢ (𝐽 ∈ Top → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝑋 = ∪ 𝐽)) | 
| 4 | 1, 3 | syl 17 | . 2 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝑋 = ∪ 𝐽)) | 
| 5 | eqid 2736 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 6 | 5 | flimfil 23978 | . . . 4 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘∪ 𝐽)) | 
| 7 | fveq2 6905 | . . . . 5 ⊢ (𝑋 = ∪ 𝐽 → (Fil‘𝑋) = (Fil‘∪ 𝐽)) | |
| 8 | 7 | eleq2d 2826 | . . . 4 ⊢ (𝑋 = ∪ 𝐽 → (𝐹 ∈ (Fil‘𝑋) ↔ 𝐹 ∈ (Fil‘∪ 𝐽))) | 
| 9 | 6, 8 | syl5ibrcom 247 | . . 3 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → (𝑋 = ∪ 𝐽 → 𝐹 ∈ (Fil‘𝑋))) | 
| 10 | filunibas 23890 | . . . . 5 ⊢ (𝐹 ∈ (Fil‘∪ 𝐽) → ∪ 𝐹 = ∪ 𝐽) | |
| 11 | 6, 10 | syl 17 | . . . 4 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → ∪ 𝐹 = ∪ 𝐽) | 
| 12 | filunibas 23890 | . . . . 5 ⊢ (𝐹 ∈ (Fil‘𝑋) → ∪ 𝐹 = 𝑋) | |
| 13 | 12 | eqeq1d 2738 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → (∪ 𝐹 = ∪ 𝐽 ↔ 𝑋 = ∪ 𝐽)) | 
| 14 | 11, 13 | syl5ibcom 245 | . . 3 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → (𝐹 ∈ (Fil‘𝑋) → 𝑋 = ∪ 𝐽)) | 
| 15 | 9, 14 | impbid 212 | . 2 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → (𝑋 = ∪ 𝐽 ↔ 𝐹 ∈ (Fil‘𝑋))) | 
| 16 | 4, 15 | bitrd 279 | 1 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐹 ∈ (Fil‘𝑋))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ∪ cuni 4906 ‘cfv 6560 (class class class)co 7432 Topctop 22900 TopOnctopon 22917 Filcfil 23854 fLim cflim 23943 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-fbas 21362 df-top 22901 df-topon 22918 df-nei 23107 df-fil 23855 df-flim 23948 | 
| This theorem is referenced by: fclsfnflim 24036 | 
| Copyright terms: Public domain | W3C validator |