MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimtopon Structured version   Visualization version   GIF version

Theorem flimtopon 23994
Description: Reverse closure for the limit point predicate. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
flimtopon (𝐴 ∈ (𝐽 fLim 𝐹) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐹 ∈ (Fil‘𝑋)))

Proof of Theorem flimtopon
StepHypRef Expression
1 flimtop 23989 . . 3 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top)
2 istopon 22934 . . . 4 (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝐽))
32baib 535 . . 3 (𝐽 ∈ Top → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝑋 = 𝐽))
41, 3syl 17 . 2 (𝐴 ∈ (𝐽 fLim 𝐹) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝑋 = 𝐽))
5 eqid 2735 . . . . 5 𝐽 = 𝐽
65flimfil 23993 . . . 4 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘ 𝐽))
7 fveq2 6907 . . . . 5 (𝑋 = 𝐽 → (Fil‘𝑋) = (Fil‘ 𝐽))
87eleq2d 2825 . . . 4 (𝑋 = 𝐽 → (𝐹 ∈ (Fil‘𝑋) ↔ 𝐹 ∈ (Fil‘ 𝐽)))
96, 8syl5ibrcom 247 . . 3 (𝐴 ∈ (𝐽 fLim 𝐹) → (𝑋 = 𝐽𝐹 ∈ (Fil‘𝑋)))
10 filunibas 23905 . . . . 5 (𝐹 ∈ (Fil‘ 𝐽) → 𝐹 = 𝐽)
116, 10syl 17 . . . 4 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 = 𝐽)
12 filunibas 23905 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → 𝐹 = 𝑋)
1312eqeq1d 2737 . . . 4 (𝐹 ∈ (Fil‘𝑋) → ( 𝐹 = 𝐽𝑋 = 𝐽))
1411, 13syl5ibcom 245 . . 3 (𝐴 ∈ (𝐽 fLim 𝐹) → (𝐹 ∈ (Fil‘𝑋) → 𝑋 = 𝐽))
159, 14impbid 212 . 2 (𝐴 ∈ (𝐽 fLim 𝐹) → (𝑋 = 𝐽𝐹 ∈ (Fil‘𝑋)))
164, 15bitrd 279 1 (𝐴 ∈ (𝐽 fLim 𝐹) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐹 ∈ (Fil‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2106   cuni 4912  cfv 6563  (class class class)co 7431  Topctop 22915  TopOnctopon 22932  Filcfil 23869   fLim cflim 23958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-fbas 21379  df-top 22916  df-topon 22933  df-nei 23122  df-fil 23870  df-flim 23963
This theorem is referenced by:  fclsfnflim  24051
  Copyright terms: Public domain W3C validator