![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > flimtopon | Structured version Visualization version GIF version |
Description: Reverse closure for the limit point predicate. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
flimtopon | ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐹 ∈ (Fil‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flimtop 22277 | . . 3 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top) | |
2 | istopon 21224 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽)) | |
3 | 2 | baib 528 | . . 3 ⊢ (𝐽 ∈ Top → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝑋 = ∪ 𝐽)) |
4 | 1, 3 | syl 17 | . 2 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝑋 = ∪ 𝐽)) |
5 | eqid 2779 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
6 | 5 | flimfil 22281 | . . . 4 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘∪ 𝐽)) |
7 | fveq2 6499 | . . . . 5 ⊢ (𝑋 = ∪ 𝐽 → (Fil‘𝑋) = (Fil‘∪ 𝐽)) | |
8 | 7 | eleq2d 2852 | . . . 4 ⊢ (𝑋 = ∪ 𝐽 → (𝐹 ∈ (Fil‘𝑋) ↔ 𝐹 ∈ (Fil‘∪ 𝐽))) |
9 | 6, 8 | syl5ibrcom 239 | . . 3 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → (𝑋 = ∪ 𝐽 → 𝐹 ∈ (Fil‘𝑋))) |
10 | filunibas 22193 | . . . . 5 ⊢ (𝐹 ∈ (Fil‘∪ 𝐽) → ∪ 𝐹 = ∪ 𝐽) | |
11 | 6, 10 | syl 17 | . . . 4 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → ∪ 𝐹 = ∪ 𝐽) |
12 | filunibas 22193 | . . . . 5 ⊢ (𝐹 ∈ (Fil‘𝑋) → ∪ 𝐹 = 𝑋) | |
13 | 12 | eqeq1d 2781 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → (∪ 𝐹 = ∪ 𝐽 ↔ 𝑋 = ∪ 𝐽)) |
14 | 11, 13 | syl5ibcom 237 | . . 3 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → (𝐹 ∈ (Fil‘𝑋) → 𝑋 = ∪ 𝐽)) |
15 | 9, 14 | impbid 204 | . 2 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → (𝑋 = ∪ 𝐽 ↔ 𝐹 ∈ (Fil‘𝑋))) |
16 | 4, 15 | bitrd 271 | 1 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐹 ∈ (Fil‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1507 ∈ wcel 2050 ∪ cuni 4712 ‘cfv 6188 (class class class)co 6976 Topctop 21205 TopOnctopon 21222 Filcfil 22157 fLim cflim 22246 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-id 5312 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-ov 6979 df-oprab 6980 df-mpo 6981 df-fbas 20244 df-top 21206 df-topon 21223 df-nei 21410 df-fil 22158 df-flim 22251 |
This theorem is referenced by: fclsfnflim 22339 |
Copyright terms: Public domain | W3C validator |