![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > flimtopon | Structured version Visualization version GIF version |
Description: Reverse closure for the limit point predicate. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
flimtopon | β’ (π΄ β (π½ fLim πΉ) β (π½ β (TopOnβπ) β πΉ β (Filβπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flimtop 23690 | . . 3 β’ (π΄ β (π½ fLim πΉ) β π½ β Top) | |
2 | istopon 22635 | . . . 4 β’ (π½ β (TopOnβπ) β (π½ β Top β§ π = βͺ π½)) | |
3 | 2 | baib 535 | . . 3 β’ (π½ β Top β (π½ β (TopOnβπ) β π = βͺ π½)) |
4 | 1, 3 | syl 17 | . 2 β’ (π΄ β (π½ fLim πΉ) β (π½ β (TopOnβπ) β π = βͺ π½)) |
5 | eqid 2731 | . . . . 5 β’ βͺ π½ = βͺ π½ | |
6 | 5 | flimfil 23694 | . . . 4 β’ (π΄ β (π½ fLim πΉ) β πΉ β (Filββͺ π½)) |
7 | fveq2 6892 | . . . . 5 β’ (π = βͺ π½ β (Filβπ) = (Filββͺ π½)) | |
8 | 7 | eleq2d 2818 | . . . 4 β’ (π = βͺ π½ β (πΉ β (Filβπ) β πΉ β (Filββͺ π½))) |
9 | 6, 8 | syl5ibrcom 246 | . . 3 β’ (π΄ β (π½ fLim πΉ) β (π = βͺ π½ β πΉ β (Filβπ))) |
10 | filunibas 23606 | . . . . 5 β’ (πΉ β (Filββͺ π½) β βͺ πΉ = βͺ π½) | |
11 | 6, 10 | syl 17 | . . . 4 β’ (π΄ β (π½ fLim πΉ) β βͺ πΉ = βͺ π½) |
12 | filunibas 23606 | . . . . 5 β’ (πΉ β (Filβπ) β βͺ πΉ = π) | |
13 | 12 | eqeq1d 2733 | . . . 4 β’ (πΉ β (Filβπ) β (βͺ πΉ = βͺ π½ β π = βͺ π½)) |
14 | 11, 13 | syl5ibcom 244 | . . 3 β’ (π΄ β (π½ fLim πΉ) β (πΉ β (Filβπ) β π = βͺ π½)) |
15 | 9, 14 | impbid 211 | . 2 β’ (π΄ β (π½ fLim πΉ) β (π = βͺ π½ β πΉ β (Filβπ))) |
16 | 4, 15 | bitrd 278 | 1 β’ (π΄ β (π½ fLim πΉ) β (π½ β (TopOnβπ) β πΉ β (Filβπ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1540 β wcel 2105 βͺ cuni 4909 βcfv 6544 (class class class)co 7412 Topctop 22616 TopOnctopon 22633 Filcfil 23570 fLim cflim 23659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7415 df-oprab 7416 df-mpo 7417 df-fbas 21142 df-top 22617 df-topon 22634 df-nei 22823 df-fil 23571 df-flim 23664 |
This theorem is referenced by: fclsfnflim 23752 |
Copyright terms: Public domain | W3C validator |