Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . 5
⊢ ∪ 𝐽 =
∪ 𝐽 |
2 | | eqid 2738 |
. . . . 5
⊢ ∪ 𝐾 =
∪ 𝐾 |
3 | 1, 2 | cnpf 22306 |
. . . 4
⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
4 | 3 | adantl 481 |
. . 3
⊢ ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
5 | 1 | flimelbas 23027 |
. . . 4
⊢ (𝐴 ∈ (𝐽 fLim 𝐿) → 𝐴 ∈ ∪ 𝐽) |
6 | 5 | adantr 480 |
. . 3
⊢ ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐴 ∈ ∪ 𝐽) |
7 | 4, 6 | ffvelrnd 6944 |
. 2
⊢ ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹‘𝐴) ∈ ∪ 𝐾) |
8 | | simplr 765 |
. . . . . 6
⊢ (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝐾 ∧ (𝐹‘𝐴) ∈ 𝑥)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) |
9 | | simprl 767 |
. . . . . 6
⊢ (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝐾 ∧ (𝐹‘𝐴) ∈ 𝑥)) → 𝑥 ∈ 𝐾) |
10 | | simprr 769 |
. . . . . 6
⊢ (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝐾 ∧ (𝐹‘𝐴) ∈ 𝑥)) → (𝐹‘𝐴) ∈ 𝑥) |
11 | | cnpimaex 22315 |
. . . . . 6
⊢ ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑥 ∈ 𝐾 ∧ (𝐹‘𝐴) ∈ 𝑥) → ∃𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑥)) |
12 | 8, 9, 10, 11 | syl3anc 1369 |
. . . . 5
⊢ (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝐾 ∧ (𝐹‘𝐴) ∈ 𝑥)) → ∃𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑥)) |
13 | | anass 468 |
. . . . . . 7
⊢ (((𝑦 ∈ 𝐽 ∧ 𝐴 ∈ 𝑦) ∧ (𝐹 “ 𝑦) ⊆ 𝑥) ↔ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑥))) |
14 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐴 ∈ (𝐽 fLim 𝐿)) |
15 | | flimtop 23024 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ (𝐽 fLim 𝐿) → 𝐽 ∈ Top) |
16 | 15 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐽 ∈ Top) |
17 | | toptopon2 21975 |
. . . . . . . . . . . . . . 15
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
18 | 16, 17 | sylib 217 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
19 | 1 | flimfil 23028 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ (𝐽 fLim 𝐿) → 𝐿 ∈ (Fil‘∪ 𝐽)) |
20 | 19 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐿 ∈ (Fil‘∪ 𝐽)) |
21 | | flimopn 23034 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽)
∧ 𝐿 ∈
(Fil‘∪ 𝐽)) → (𝐴 ∈ (𝐽 fLim 𝐿) ↔ (𝐴 ∈ ∪ 𝐽 ∧ ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → 𝑦 ∈ 𝐿)))) |
22 | 18, 20, 21 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐴 ∈ (𝐽 fLim 𝐿) ↔ (𝐴 ∈ ∪ 𝐽 ∧ ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → 𝑦 ∈ 𝐿)))) |
23 | 14, 22 | mpbid 231 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐴 ∈ ∪ 𝐽 ∧ ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → 𝑦 ∈ 𝐿))) |
24 | 23 | simprd 495 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → 𝑦 ∈ 𝐿)) |
25 | 24 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝐾 ∧ (𝐹‘𝐴) ∈ 𝑥)) → ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → 𝑦 ∈ 𝐿)) |
26 | 25 | r19.21bi 3132 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝐾 ∧ (𝐹‘𝐴) ∈ 𝑥)) ∧ 𝑦 ∈ 𝐽) → (𝐴 ∈ 𝑦 → 𝑦 ∈ 𝐿)) |
27 | 26 | expimpd 453 |
. . . . . . . 8
⊢ (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝐾 ∧ (𝐹‘𝐴) ∈ 𝑥)) → ((𝑦 ∈ 𝐽 ∧ 𝐴 ∈ 𝑦) → 𝑦 ∈ 𝐿)) |
28 | 27 | anim1d 610 |
. . . . . . 7
⊢ (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝐾 ∧ (𝐹‘𝐴) ∈ 𝑥)) → (((𝑦 ∈ 𝐽 ∧ 𝐴 ∈ 𝑦) ∧ (𝐹 “ 𝑦) ⊆ 𝑥) → (𝑦 ∈ 𝐿 ∧ (𝐹 “ 𝑦) ⊆ 𝑥))) |
29 | 13, 28 | syl5bir 242 |
. . . . . 6
⊢ (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝐾 ∧ (𝐹‘𝐴) ∈ 𝑥)) → ((𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑥)) → (𝑦 ∈ 𝐿 ∧ (𝐹 “ 𝑦) ⊆ 𝑥))) |
30 | 29 | reximdv2 3198 |
. . . . 5
⊢ (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝐾 ∧ (𝐹‘𝐴) ∈ 𝑥)) → (∃𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑥) → ∃𝑦 ∈ 𝐿 (𝐹 “ 𝑦) ⊆ 𝑥)) |
31 | 12, 30 | mpd 15 |
. . . 4
⊢ (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝐾 ∧ (𝐹‘𝐴) ∈ 𝑥)) → ∃𝑦 ∈ 𝐿 (𝐹 “ 𝑦) ⊆ 𝑥) |
32 | 31 | expr 456 |
. . 3
⊢ (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥 ∈ 𝐾) → ((𝐹‘𝐴) ∈ 𝑥 → ∃𝑦 ∈ 𝐿 (𝐹 “ 𝑦) ⊆ 𝑥)) |
33 | 32 | ralrimiva 3107 |
. 2
⊢ ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → ∀𝑥 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑥 → ∃𝑦 ∈ 𝐿 (𝐹 “ 𝑦) ⊆ 𝑥)) |
34 | | cnptop2 22302 |
. . . . 5
⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → 𝐾 ∈ Top) |
35 | 34 | adantl 481 |
. . . 4
⊢ ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐾 ∈ Top) |
36 | | toptopon2 21975 |
. . . 4
⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) |
37 | 35, 36 | sylib 217 |
. . 3
⊢ ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
38 | | isflf 23052 |
. . 3
⊢ ((𝐾 ∈ (TopOn‘∪ 𝐾)
∧ 𝐿 ∈
(Fil‘∪ 𝐽) ∧ 𝐹:∪ 𝐽⟶∪ 𝐾)
→ ((𝐹‘𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹) ↔ ((𝐹‘𝐴) ∈ ∪ 𝐾 ∧ ∀𝑥 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑥 → ∃𝑦 ∈ 𝐿 (𝐹 “ 𝑦) ⊆ 𝑥)))) |
39 | 37, 20, 4, 38 | syl3anc 1369 |
. 2
⊢ ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → ((𝐹‘𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹) ↔ ((𝐹‘𝐴) ∈ ∪ 𝐾 ∧ ∀𝑥 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑥 → ∃𝑦 ∈ 𝐿 (𝐹 “ 𝑦) ⊆ 𝑥)))) |
40 | 7, 33, 39 | mpbir2and 709 |
1
⊢ ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹)) |