MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpflfi Structured version   Visualization version   GIF version

Theorem cnpflfi 23884
Description: Forward direction of cnpflf 23886. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
cnpflfi ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹))

Proof of Theorem cnpflfi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . 5 𝐽 = 𝐽
2 eqid 2729 . . . . 5 𝐾 = 𝐾
31, 2cnpf 23132 . . . 4 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → 𝐹: 𝐽 𝐾)
43adantl 481 . . 3 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹: 𝐽 𝐾)
51flimelbas 23853 . . . 4 (𝐴 ∈ (𝐽 fLim 𝐿) → 𝐴 𝐽)
65adantr 480 . . 3 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐴 𝐽)
74, 6ffvelcdmd 7019 . 2 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹𝐴) ∈ 𝐾)
8 simplr 768 . . . . . 6 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))
9 simprl 770 . . . . . 6 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → 𝑥𝐾)
10 simprr 772 . . . . . 6 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → (𝐹𝐴) ∈ 𝑥)
11 cnpimaex 23141 . . . . . 6 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥) → ∃𝑦𝐽 (𝐴𝑦 ∧ (𝐹𝑦) ⊆ 𝑥))
128, 9, 10, 11syl3anc 1373 . . . . 5 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → ∃𝑦𝐽 (𝐴𝑦 ∧ (𝐹𝑦) ⊆ 𝑥))
13 anass 468 . . . . . . 7 (((𝑦𝐽𝐴𝑦) ∧ (𝐹𝑦) ⊆ 𝑥) ↔ (𝑦𝐽 ∧ (𝐴𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)))
14 simpl 482 . . . . . . . . . . . . 13 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐴 ∈ (𝐽 fLim 𝐿))
15 flimtop 23850 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (𝐽 fLim 𝐿) → 𝐽 ∈ Top)
1615adantr 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐽 ∈ Top)
17 toptopon2 22803 . . . . . . . . . . . . . . 15 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
1816, 17sylib 218 . . . . . . . . . . . . . 14 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐽 ∈ (TopOn‘ 𝐽))
191flimfil 23854 . . . . . . . . . . . . . . 15 (𝐴 ∈ (𝐽 fLim 𝐿) → 𝐿 ∈ (Fil‘ 𝐽))
2019adantr 480 . . . . . . . . . . . . . 14 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐿 ∈ (Fil‘ 𝐽))
21 flimopn 23860 . . . . . . . . . . . . . 14 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐿 ∈ (Fil‘ 𝐽)) → (𝐴 ∈ (𝐽 fLim 𝐿) ↔ (𝐴 𝐽 ∧ ∀𝑦𝐽 (𝐴𝑦𝑦𝐿))))
2218, 20, 21syl2anc 584 . . . . . . . . . . . . 13 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐴 ∈ (𝐽 fLim 𝐿) ↔ (𝐴 𝐽 ∧ ∀𝑦𝐽 (𝐴𝑦𝑦𝐿))))
2314, 22mpbid 232 . . . . . . . . . . . 12 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐴 𝐽 ∧ ∀𝑦𝐽 (𝐴𝑦𝑦𝐿)))
2423simprd 495 . . . . . . . . . . 11 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → ∀𝑦𝐽 (𝐴𝑦𝑦𝐿))
2524adantr 480 . . . . . . . . . 10 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → ∀𝑦𝐽 (𝐴𝑦𝑦𝐿))
2625r19.21bi 3221 . . . . . . . . 9 ((((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) ∧ 𝑦𝐽) → (𝐴𝑦𝑦𝐿))
2726expimpd 453 . . . . . . . 8 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → ((𝑦𝐽𝐴𝑦) → 𝑦𝐿))
2827anim1d 611 . . . . . . 7 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → (((𝑦𝐽𝐴𝑦) ∧ (𝐹𝑦) ⊆ 𝑥) → (𝑦𝐿 ∧ (𝐹𝑦) ⊆ 𝑥)))
2913, 28biimtrrid 243 . . . . . 6 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → ((𝑦𝐽 ∧ (𝐴𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)) → (𝑦𝐿 ∧ (𝐹𝑦) ⊆ 𝑥)))
3029reximdv2 3139 . . . . 5 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → (∃𝑦𝐽 (𝐴𝑦 ∧ (𝐹𝑦) ⊆ 𝑥) → ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝑥))
3112, 30mpd 15 . . . 4 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝑥)
3231expr 456 . . 3 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥𝐾) → ((𝐹𝐴) ∈ 𝑥 → ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝑥))
3332ralrimiva 3121 . 2 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → ∀𝑥𝐾 ((𝐹𝐴) ∈ 𝑥 → ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝑥))
34 cnptop2 23128 . . . . 5 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → 𝐾 ∈ Top)
3534adantl 481 . . . 4 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐾 ∈ Top)
36 toptopon2 22803 . . . 4 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
3735, 36sylib 218 . . 3 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐾 ∈ (TopOn‘ 𝐾))
38 isflf 23878 . . 3 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝐿 ∈ (Fil‘ 𝐽) ∧ 𝐹: 𝐽 𝐾) → ((𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹) ↔ ((𝐹𝐴) ∈ 𝐾 ∧ ∀𝑥𝐾 ((𝐹𝐴) ∈ 𝑥 → ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝑥))))
3937, 20, 4, 38syl3anc 1373 . 2 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → ((𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹) ↔ ((𝐹𝐴) ∈ 𝐾 ∧ ∀𝑥𝐾 ((𝐹𝐴) ∈ 𝑥 → ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝑥))))
407, 33, 39mpbir2and 713 1 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wral 3044  wrex 3053  wss 3903   cuni 4858  cima 5622  wf 6478  cfv 6482  (class class class)co 7349  Topctop 22778  TopOnctopon 22795   CnP ccnp 23110  Filcfil 23730   fLim cflim 23819   fLimf cflf 23820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-map 8755  df-fbas 21258  df-fg 21259  df-top 22779  df-topon 22796  df-ntr 22905  df-nei 22983  df-cnp 23113  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825
This theorem is referenced by:  cnpflf2  23885  cnpflf  23886  flfcnp  23889  cnpfcfi  23925
  Copyright terms: Public domain W3C validator