MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpflfi Structured version   Visualization version   GIF version

Theorem cnpflfi 24028
Description: Forward direction of cnpflf 24030. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
cnpflfi ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹))

Proof of Theorem cnpflfi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . . 5 𝐽 = 𝐽
2 eqid 2740 . . . . 5 𝐾 = 𝐾
31, 2cnpf 23276 . . . 4 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → 𝐹: 𝐽 𝐾)
43adantl 481 . . 3 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹: 𝐽 𝐾)
51flimelbas 23997 . . . 4 (𝐴 ∈ (𝐽 fLim 𝐿) → 𝐴 𝐽)
65adantr 480 . . 3 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐴 𝐽)
74, 6ffvelcdmd 7119 . 2 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹𝐴) ∈ 𝐾)
8 simplr 768 . . . . . 6 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))
9 simprl 770 . . . . . 6 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → 𝑥𝐾)
10 simprr 772 . . . . . 6 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → (𝐹𝐴) ∈ 𝑥)
11 cnpimaex 23285 . . . . . 6 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥) → ∃𝑦𝐽 (𝐴𝑦 ∧ (𝐹𝑦) ⊆ 𝑥))
128, 9, 10, 11syl3anc 1371 . . . . 5 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → ∃𝑦𝐽 (𝐴𝑦 ∧ (𝐹𝑦) ⊆ 𝑥))
13 anass 468 . . . . . . 7 (((𝑦𝐽𝐴𝑦) ∧ (𝐹𝑦) ⊆ 𝑥) ↔ (𝑦𝐽 ∧ (𝐴𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)))
14 simpl 482 . . . . . . . . . . . . 13 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐴 ∈ (𝐽 fLim 𝐿))
15 flimtop 23994 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (𝐽 fLim 𝐿) → 𝐽 ∈ Top)
1615adantr 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐽 ∈ Top)
17 toptopon2 22945 . . . . . . . . . . . . . . 15 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
1816, 17sylib 218 . . . . . . . . . . . . . 14 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐽 ∈ (TopOn‘ 𝐽))
191flimfil 23998 . . . . . . . . . . . . . . 15 (𝐴 ∈ (𝐽 fLim 𝐿) → 𝐿 ∈ (Fil‘ 𝐽))
2019adantr 480 . . . . . . . . . . . . . 14 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐿 ∈ (Fil‘ 𝐽))
21 flimopn 24004 . . . . . . . . . . . . . 14 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐿 ∈ (Fil‘ 𝐽)) → (𝐴 ∈ (𝐽 fLim 𝐿) ↔ (𝐴 𝐽 ∧ ∀𝑦𝐽 (𝐴𝑦𝑦𝐿))))
2218, 20, 21syl2anc 583 . . . . . . . . . . . . 13 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐴 ∈ (𝐽 fLim 𝐿) ↔ (𝐴 𝐽 ∧ ∀𝑦𝐽 (𝐴𝑦𝑦𝐿))))
2314, 22mpbid 232 . . . . . . . . . . . 12 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐴 𝐽 ∧ ∀𝑦𝐽 (𝐴𝑦𝑦𝐿)))
2423simprd 495 . . . . . . . . . . 11 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → ∀𝑦𝐽 (𝐴𝑦𝑦𝐿))
2524adantr 480 . . . . . . . . . 10 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → ∀𝑦𝐽 (𝐴𝑦𝑦𝐿))
2625r19.21bi 3257 . . . . . . . . 9 ((((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) ∧ 𝑦𝐽) → (𝐴𝑦𝑦𝐿))
2726expimpd 453 . . . . . . . 8 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → ((𝑦𝐽𝐴𝑦) → 𝑦𝐿))
2827anim1d 610 . . . . . . 7 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → (((𝑦𝐽𝐴𝑦) ∧ (𝐹𝑦) ⊆ 𝑥) → (𝑦𝐿 ∧ (𝐹𝑦) ⊆ 𝑥)))
2913, 28biimtrrid 243 . . . . . 6 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → ((𝑦𝐽 ∧ (𝐴𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)) → (𝑦𝐿 ∧ (𝐹𝑦) ⊆ 𝑥)))
3029reximdv2 3170 . . . . 5 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → (∃𝑦𝐽 (𝐴𝑦 ∧ (𝐹𝑦) ⊆ 𝑥) → ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝑥))
3112, 30mpd 15 . . . 4 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝑥)
3231expr 456 . . 3 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥𝐾) → ((𝐹𝐴) ∈ 𝑥 → ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝑥))
3332ralrimiva 3152 . 2 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → ∀𝑥𝐾 ((𝐹𝐴) ∈ 𝑥 → ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝑥))
34 cnptop2 23272 . . . . 5 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → 𝐾 ∈ Top)
3534adantl 481 . . . 4 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐾 ∈ Top)
36 toptopon2 22945 . . . 4 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
3735, 36sylib 218 . . 3 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐾 ∈ (TopOn‘ 𝐾))
38 isflf 24022 . . 3 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝐿 ∈ (Fil‘ 𝐽) ∧ 𝐹: 𝐽 𝐾) → ((𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹) ↔ ((𝐹𝐴) ∈ 𝐾 ∧ ∀𝑥𝐾 ((𝐹𝐴) ∈ 𝑥 → ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝑥))))
3937, 20, 4, 38syl3anc 1371 . 2 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → ((𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹) ↔ ((𝐹𝐴) ∈ 𝐾 ∧ ∀𝑥𝐾 ((𝐹𝐴) ∈ 𝑥 → ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝑥))))
407, 33, 39mpbir2and 712 1 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wral 3067  wrex 3076  wss 3976   cuni 4931  cima 5703  wf 6569  cfv 6573  (class class class)co 7448  Topctop 22920  TopOnctopon 22937   CnP ccnp 23254  Filcfil 23874   fLim cflim 23963   fLimf cflf 23964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886  df-fbas 21384  df-fg 21385  df-top 22921  df-topon 22938  df-ntr 23049  df-nei 23127  df-cnp 23257  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969
This theorem is referenced by:  cnpflf2  24029  cnpflf  24030  flfcnp  24033  cnpfcfi  24069
  Copyright terms: Public domain W3C validator