| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2736 |
. . . . 5
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 2 | | eqid 2736 |
. . . . 5
⊢ ∪ 𝐾 =
∪ 𝐾 |
| 3 | 1, 2 | cnpf 23190 |
. . . 4
⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
| 4 | 3 | adantl 481 |
. . 3
⊢ ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
| 5 | 1 | flimelbas 23911 |
. . . 4
⊢ (𝐴 ∈ (𝐽 fLim 𝐿) → 𝐴 ∈ ∪ 𝐽) |
| 6 | 5 | adantr 480 |
. . 3
⊢ ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐴 ∈ ∪ 𝐽) |
| 7 | 4, 6 | ffvelcdmd 7080 |
. 2
⊢ ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹‘𝐴) ∈ ∪ 𝐾) |
| 8 | | simplr 768 |
. . . . . 6
⊢ (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝐾 ∧ (𝐹‘𝐴) ∈ 𝑥)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) |
| 9 | | simprl 770 |
. . . . . 6
⊢ (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝐾 ∧ (𝐹‘𝐴) ∈ 𝑥)) → 𝑥 ∈ 𝐾) |
| 10 | | simprr 772 |
. . . . . 6
⊢ (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝐾 ∧ (𝐹‘𝐴) ∈ 𝑥)) → (𝐹‘𝐴) ∈ 𝑥) |
| 11 | | cnpimaex 23199 |
. . . . . 6
⊢ ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑥 ∈ 𝐾 ∧ (𝐹‘𝐴) ∈ 𝑥) → ∃𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑥)) |
| 12 | 8, 9, 10, 11 | syl3anc 1373 |
. . . . 5
⊢ (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝐾 ∧ (𝐹‘𝐴) ∈ 𝑥)) → ∃𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑥)) |
| 13 | | anass 468 |
. . . . . . 7
⊢ (((𝑦 ∈ 𝐽 ∧ 𝐴 ∈ 𝑦) ∧ (𝐹 “ 𝑦) ⊆ 𝑥) ↔ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑥))) |
| 14 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐴 ∈ (𝐽 fLim 𝐿)) |
| 15 | | flimtop 23908 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ (𝐽 fLim 𝐿) → 𝐽 ∈ Top) |
| 16 | 15 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐽 ∈ Top) |
| 17 | | toptopon2 22861 |
. . . . . . . . . . . . . . 15
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 18 | 16, 17 | sylib 218 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 19 | 1 | flimfil 23912 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ (𝐽 fLim 𝐿) → 𝐿 ∈ (Fil‘∪ 𝐽)) |
| 20 | 19 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐿 ∈ (Fil‘∪ 𝐽)) |
| 21 | | flimopn 23918 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽)
∧ 𝐿 ∈
(Fil‘∪ 𝐽)) → (𝐴 ∈ (𝐽 fLim 𝐿) ↔ (𝐴 ∈ ∪ 𝐽 ∧ ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → 𝑦 ∈ 𝐿)))) |
| 22 | 18, 20, 21 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐴 ∈ (𝐽 fLim 𝐿) ↔ (𝐴 ∈ ∪ 𝐽 ∧ ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → 𝑦 ∈ 𝐿)))) |
| 23 | 14, 22 | mpbid 232 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐴 ∈ ∪ 𝐽 ∧ ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → 𝑦 ∈ 𝐿))) |
| 24 | 23 | simprd 495 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → 𝑦 ∈ 𝐿)) |
| 25 | 24 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝐾 ∧ (𝐹‘𝐴) ∈ 𝑥)) → ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → 𝑦 ∈ 𝐿)) |
| 26 | 25 | r19.21bi 3238 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝐾 ∧ (𝐹‘𝐴) ∈ 𝑥)) ∧ 𝑦 ∈ 𝐽) → (𝐴 ∈ 𝑦 → 𝑦 ∈ 𝐿)) |
| 27 | 26 | expimpd 453 |
. . . . . . . 8
⊢ (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝐾 ∧ (𝐹‘𝐴) ∈ 𝑥)) → ((𝑦 ∈ 𝐽 ∧ 𝐴 ∈ 𝑦) → 𝑦 ∈ 𝐿)) |
| 28 | 27 | anim1d 611 |
. . . . . . 7
⊢ (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝐾 ∧ (𝐹‘𝐴) ∈ 𝑥)) → (((𝑦 ∈ 𝐽 ∧ 𝐴 ∈ 𝑦) ∧ (𝐹 “ 𝑦) ⊆ 𝑥) → (𝑦 ∈ 𝐿 ∧ (𝐹 “ 𝑦) ⊆ 𝑥))) |
| 29 | 13, 28 | biimtrrid 243 |
. . . . . 6
⊢ (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝐾 ∧ (𝐹‘𝐴) ∈ 𝑥)) → ((𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑥)) → (𝑦 ∈ 𝐿 ∧ (𝐹 “ 𝑦) ⊆ 𝑥))) |
| 30 | 29 | reximdv2 3151 |
. . . . 5
⊢ (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝐾 ∧ (𝐹‘𝐴) ∈ 𝑥)) → (∃𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑥) → ∃𝑦 ∈ 𝐿 (𝐹 “ 𝑦) ⊆ 𝑥)) |
| 31 | 12, 30 | mpd 15 |
. . . 4
⊢ (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝐾 ∧ (𝐹‘𝐴) ∈ 𝑥)) → ∃𝑦 ∈ 𝐿 (𝐹 “ 𝑦) ⊆ 𝑥) |
| 32 | 31 | expr 456 |
. . 3
⊢ (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥 ∈ 𝐾) → ((𝐹‘𝐴) ∈ 𝑥 → ∃𝑦 ∈ 𝐿 (𝐹 “ 𝑦) ⊆ 𝑥)) |
| 33 | 32 | ralrimiva 3133 |
. 2
⊢ ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → ∀𝑥 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑥 → ∃𝑦 ∈ 𝐿 (𝐹 “ 𝑦) ⊆ 𝑥)) |
| 34 | | cnptop2 23186 |
. . . . 5
⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → 𝐾 ∈ Top) |
| 35 | 34 | adantl 481 |
. . . 4
⊢ ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐾 ∈ Top) |
| 36 | | toptopon2 22861 |
. . . 4
⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) |
| 37 | 35, 36 | sylib 218 |
. . 3
⊢ ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
| 38 | | isflf 23936 |
. . 3
⊢ ((𝐾 ∈ (TopOn‘∪ 𝐾)
∧ 𝐿 ∈
(Fil‘∪ 𝐽) ∧ 𝐹:∪ 𝐽⟶∪ 𝐾)
→ ((𝐹‘𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹) ↔ ((𝐹‘𝐴) ∈ ∪ 𝐾 ∧ ∀𝑥 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑥 → ∃𝑦 ∈ 𝐿 (𝐹 “ 𝑦) ⊆ 𝑥)))) |
| 39 | 37, 20, 4, 38 | syl3anc 1373 |
. 2
⊢ ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → ((𝐹‘𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹) ↔ ((𝐹‘𝐴) ∈ ∪ 𝐾 ∧ ∀𝑥 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑥 → ∃𝑦 ∈ 𝐿 (𝐹 “ 𝑦) ⊆ 𝑥)))) |
| 40 | 7, 33, 39 | mpbir2and 713 |
1
⊢ ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹)) |