MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpflfi Structured version   Visualization version   GIF version

Theorem cnpflfi 23893
Description: Forward direction of cnpflf 23895. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
cnpflfi ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹))

Proof of Theorem cnpflfi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . . 5 𝐽 = 𝐽
2 eqid 2730 . . . . 5 𝐾 = 𝐾
31, 2cnpf 23141 . . . 4 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → 𝐹: 𝐽 𝐾)
43adantl 481 . . 3 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹: 𝐽 𝐾)
51flimelbas 23862 . . . 4 (𝐴 ∈ (𝐽 fLim 𝐿) → 𝐴 𝐽)
65adantr 480 . . 3 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐴 𝐽)
74, 6ffvelcdmd 7060 . 2 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹𝐴) ∈ 𝐾)
8 simplr 768 . . . . . 6 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))
9 simprl 770 . . . . . 6 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → 𝑥𝐾)
10 simprr 772 . . . . . 6 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → (𝐹𝐴) ∈ 𝑥)
11 cnpimaex 23150 . . . . . 6 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥) → ∃𝑦𝐽 (𝐴𝑦 ∧ (𝐹𝑦) ⊆ 𝑥))
128, 9, 10, 11syl3anc 1373 . . . . 5 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → ∃𝑦𝐽 (𝐴𝑦 ∧ (𝐹𝑦) ⊆ 𝑥))
13 anass 468 . . . . . . 7 (((𝑦𝐽𝐴𝑦) ∧ (𝐹𝑦) ⊆ 𝑥) ↔ (𝑦𝐽 ∧ (𝐴𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)))
14 simpl 482 . . . . . . . . . . . . 13 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐴 ∈ (𝐽 fLim 𝐿))
15 flimtop 23859 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (𝐽 fLim 𝐿) → 𝐽 ∈ Top)
1615adantr 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐽 ∈ Top)
17 toptopon2 22812 . . . . . . . . . . . . . . 15 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
1816, 17sylib 218 . . . . . . . . . . . . . 14 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐽 ∈ (TopOn‘ 𝐽))
191flimfil 23863 . . . . . . . . . . . . . . 15 (𝐴 ∈ (𝐽 fLim 𝐿) → 𝐿 ∈ (Fil‘ 𝐽))
2019adantr 480 . . . . . . . . . . . . . 14 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐿 ∈ (Fil‘ 𝐽))
21 flimopn 23869 . . . . . . . . . . . . . 14 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐿 ∈ (Fil‘ 𝐽)) → (𝐴 ∈ (𝐽 fLim 𝐿) ↔ (𝐴 𝐽 ∧ ∀𝑦𝐽 (𝐴𝑦𝑦𝐿))))
2218, 20, 21syl2anc 584 . . . . . . . . . . . . 13 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐴 ∈ (𝐽 fLim 𝐿) ↔ (𝐴 𝐽 ∧ ∀𝑦𝐽 (𝐴𝑦𝑦𝐿))))
2314, 22mpbid 232 . . . . . . . . . . . 12 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐴 𝐽 ∧ ∀𝑦𝐽 (𝐴𝑦𝑦𝐿)))
2423simprd 495 . . . . . . . . . . 11 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → ∀𝑦𝐽 (𝐴𝑦𝑦𝐿))
2524adantr 480 . . . . . . . . . 10 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → ∀𝑦𝐽 (𝐴𝑦𝑦𝐿))
2625r19.21bi 3230 . . . . . . . . 9 ((((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) ∧ 𝑦𝐽) → (𝐴𝑦𝑦𝐿))
2726expimpd 453 . . . . . . . 8 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → ((𝑦𝐽𝐴𝑦) → 𝑦𝐿))
2827anim1d 611 . . . . . . 7 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → (((𝑦𝐽𝐴𝑦) ∧ (𝐹𝑦) ⊆ 𝑥) → (𝑦𝐿 ∧ (𝐹𝑦) ⊆ 𝑥)))
2913, 28biimtrrid 243 . . . . . 6 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → ((𝑦𝐽 ∧ (𝐴𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)) → (𝑦𝐿 ∧ (𝐹𝑦) ⊆ 𝑥)))
3029reximdv2 3144 . . . . 5 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → (∃𝑦𝐽 (𝐴𝑦 ∧ (𝐹𝑦) ⊆ 𝑥) → ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝑥))
3112, 30mpd 15 . . . 4 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝑥)
3231expr 456 . . 3 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥𝐾) → ((𝐹𝐴) ∈ 𝑥 → ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝑥))
3332ralrimiva 3126 . 2 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → ∀𝑥𝐾 ((𝐹𝐴) ∈ 𝑥 → ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝑥))
34 cnptop2 23137 . . . . 5 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → 𝐾 ∈ Top)
3534adantl 481 . . . 4 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐾 ∈ Top)
36 toptopon2 22812 . . . 4 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
3735, 36sylib 218 . . 3 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐾 ∈ (TopOn‘ 𝐾))
38 isflf 23887 . . 3 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝐿 ∈ (Fil‘ 𝐽) ∧ 𝐹: 𝐽 𝐾) → ((𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹) ↔ ((𝐹𝐴) ∈ 𝐾 ∧ ∀𝑥𝐾 ((𝐹𝐴) ∈ 𝑥 → ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝑥))))
3937, 20, 4, 38syl3anc 1373 . 2 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → ((𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹) ↔ ((𝐹𝐴) ∈ 𝐾 ∧ ∀𝑥𝐾 ((𝐹𝐴) ∈ 𝑥 → ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝑥))))
407, 33, 39mpbir2and 713 1 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wral 3045  wrex 3054  wss 3917   cuni 4874  cima 5644  wf 6510  cfv 6514  (class class class)co 7390  Topctop 22787  TopOnctopon 22804   CnP ccnp 23119  Filcfil 23739   fLim cflim 23828   fLimf cflf 23829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-map 8804  df-fbas 21268  df-fg 21269  df-top 22788  df-topon 22805  df-ntr 22914  df-nei 22992  df-cnp 23122  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834
This theorem is referenced by:  cnpflf2  23894  cnpflf  23895  flfcnp  23898  cnpfcfi  23934
  Copyright terms: Public domain W3C validator