MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpflfi Structured version   Visualization version   GIF version

Theorem cnpflfi 23947
Description: Forward direction of cnpflf 23949. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
cnpflfi ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹))

Proof of Theorem cnpflfi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2725 . . . . 5 𝐽 = 𝐽
2 eqid 2725 . . . . 5 𝐾 = 𝐾
31, 2cnpf 23195 . . . 4 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → 𝐹: 𝐽 𝐾)
43adantl 480 . . 3 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹: 𝐽 𝐾)
51flimelbas 23916 . . . 4 (𝐴 ∈ (𝐽 fLim 𝐿) → 𝐴 𝐽)
65adantr 479 . . 3 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐴 𝐽)
74, 6ffvelcdmd 7094 . 2 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹𝐴) ∈ 𝐾)
8 simplr 767 . . . . . 6 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))
9 simprl 769 . . . . . 6 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → 𝑥𝐾)
10 simprr 771 . . . . . 6 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → (𝐹𝐴) ∈ 𝑥)
11 cnpimaex 23204 . . . . . 6 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥) → ∃𝑦𝐽 (𝐴𝑦 ∧ (𝐹𝑦) ⊆ 𝑥))
128, 9, 10, 11syl3anc 1368 . . . . 5 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → ∃𝑦𝐽 (𝐴𝑦 ∧ (𝐹𝑦) ⊆ 𝑥))
13 anass 467 . . . . . . 7 (((𝑦𝐽𝐴𝑦) ∧ (𝐹𝑦) ⊆ 𝑥) ↔ (𝑦𝐽 ∧ (𝐴𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)))
14 simpl 481 . . . . . . . . . . . . 13 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐴 ∈ (𝐽 fLim 𝐿))
15 flimtop 23913 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (𝐽 fLim 𝐿) → 𝐽 ∈ Top)
1615adantr 479 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐽 ∈ Top)
17 toptopon2 22864 . . . . . . . . . . . . . . 15 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
1816, 17sylib 217 . . . . . . . . . . . . . 14 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐽 ∈ (TopOn‘ 𝐽))
191flimfil 23917 . . . . . . . . . . . . . . 15 (𝐴 ∈ (𝐽 fLim 𝐿) → 𝐿 ∈ (Fil‘ 𝐽))
2019adantr 479 . . . . . . . . . . . . . 14 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐿 ∈ (Fil‘ 𝐽))
21 flimopn 23923 . . . . . . . . . . . . . 14 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐿 ∈ (Fil‘ 𝐽)) → (𝐴 ∈ (𝐽 fLim 𝐿) ↔ (𝐴 𝐽 ∧ ∀𝑦𝐽 (𝐴𝑦𝑦𝐿))))
2218, 20, 21syl2anc 582 . . . . . . . . . . . . 13 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐴 ∈ (𝐽 fLim 𝐿) ↔ (𝐴 𝐽 ∧ ∀𝑦𝐽 (𝐴𝑦𝑦𝐿))))
2314, 22mpbid 231 . . . . . . . . . . . 12 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐴 𝐽 ∧ ∀𝑦𝐽 (𝐴𝑦𝑦𝐿)))
2423simprd 494 . . . . . . . . . . 11 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → ∀𝑦𝐽 (𝐴𝑦𝑦𝐿))
2524adantr 479 . . . . . . . . . 10 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → ∀𝑦𝐽 (𝐴𝑦𝑦𝐿))
2625r19.21bi 3238 . . . . . . . . 9 ((((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) ∧ 𝑦𝐽) → (𝐴𝑦𝑦𝐿))
2726expimpd 452 . . . . . . . 8 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → ((𝑦𝐽𝐴𝑦) → 𝑦𝐿))
2827anim1d 609 . . . . . . 7 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → (((𝑦𝐽𝐴𝑦) ∧ (𝐹𝑦) ⊆ 𝑥) → (𝑦𝐿 ∧ (𝐹𝑦) ⊆ 𝑥)))
2913, 28biimtrrid 242 . . . . . 6 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → ((𝑦𝐽 ∧ (𝐴𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)) → (𝑦𝐿 ∧ (𝐹𝑦) ⊆ 𝑥)))
3029reximdv2 3153 . . . . 5 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → (∃𝑦𝐽 (𝐴𝑦 ∧ (𝐹𝑦) ⊆ 𝑥) → ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝑥))
3112, 30mpd 15 . . . 4 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝑥)
3231expr 455 . . 3 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥𝐾) → ((𝐹𝐴) ∈ 𝑥 → ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝑥))
3332ralrimiva 3135 . 2 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → ∀𝑥𝐾 ((𝐹𝐴) ∈ 𝑥 → ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝑥))
34 cnptop2 23191 . . . . 5 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → 𝐾 ∈ Top)
3534adantl 480 . . . 4 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐾 ∈ Top)
36 toptopon2 22864 . . . 4 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
3735, 36sylib 217 . . 3 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐾 ∈ (TopOn‘ 𝐾))
38 isflf 23941 . . 3 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝐿 ∈ (Fil‘ 𝐽) ∧ 𝐹: 𝐽 𝐾) → ((𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹) ↔ ((𝐹𝐴) ∈ 𝐾 ∧ ∀𝑥𝐾 ((𝐹𝐴) ∈ 𝑥 → ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝑥))))
3937, 20, 4, 38syl3anc 1368 . 2 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → ((𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹) ↔ ((𝐹𝐴) ∈ 𝐾 ∧ ∀𝑥𝐾 ((𝐹𝐴) ∈ 𝑥 → ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝑥))))
407, 33, 39mpbir2and 711 1 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wcel 2098  wral 3050  wrex 3059  wss 3944   cuni 4909  cima 5681  wf 6545  cfv 6549  (class class class)co 7419  Topctop 22839  TopOnctopon 22856   CnP ccnp 23173  Filcfil 23793   fLim cflim 23882   fLimf cflf 23883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-1st 7994  df-2nd 7995  df-map 8847  df-fbas 21293  df-fg 21294  df-top 22840  df-topon 22857  df-ntr 22968  df-nei 23046  df-cnp 23176  df-fil 23794  df-fm 23886  df-flim 23887  df-flf 23888
This theorem is referenced by:  cnpflf2  23948  cnpflf  23949  flfcnp  23952  cnpfcfi  23988
  Copyright terms: Public domain W3C validator