![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > flimfcls | Structured version Visualization version GIF version |
Description: A limit point is a cluster point. (Contributed by Jeff Hankins, 12-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
Ref | Expression |
---|---|
flimfcls | ⊢ (𝐽 fLim 𝐹) ⊆ (𝐽 fClus 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flimtop 23863 | . . 3 ⊢ (𝑎 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top) | |
2 | eqid 2728 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
3 | 2 | flimfil 23867 | . . 3 ⊢ (𝑎 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘∪ 𝐽)) |
4 | flimclsi 23876 | . . . . . 6 ⊢ (𝑥 ∈ 𝐹 → (𝐽 fLim 𝐹) ⊆ ((cls‘𝐽)‘𝑥)) | |
5 | 4 | sseld 3978 | . . . . 5 ⊢ (𝑥 ∈ 𝐹 → (𝑎 ∈ (𝐽 fLim 𝐹) → 𝑎 ∈ ((cls‘𝐽)‘𝑥))) |
6 | 5 | com12 32 | . . . 4 ⊢ (𝑎 ∈ (𝐽 fLim 𝐹) → (𝑥 ∈ 𝐹 → 𝑎 ∈ ((cls‘𝐽)‘𝑥))) |
7 | 6 | ralrimiv 3141 | . . 3 ⊢ (𝑎 ∈ (𝐽 fLim 𝐹) → ∀𝑥 ∈ 𝐹 𝑎 ∈ ((cls‘𝐽)‘𝑥)) |
8 | 2 | isfcls 23907 | . . 3 ⊢ (𝑎 ∈ (𝐽 fClus 𝐹) ↔ (𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘∪ 𝐽) ∧ ∀𝑥 ∈ 𝐹 𝑎 ∈ ((cls‘𝐽)‘𝑥))) |
9 | 1, 3, 7, 8 | syl3anbrc 1341 | . 2 ⊢ (𝑎 ∈ (𝐽 fLim 𝐹) → 𝑎 ∈ (𝐽 fClus 𝐹)) |
10 | 9 | ssriv 3983 | 1 ⊢ (𝐽 fLim 𝐹) ⊆ (𝐽 fClus 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2099 ∀wral 3057 ⊆ wss 3945 ∪ cuni 4904 ‘cfv 6543 (class class class)co 7415 Topctop 22789 clsccl 22916 Filcfil 23743 fLim cflim 23832 fClus cfcls 23834 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-iin 4995 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7418 df-oprab 7419 df-mpo 7420 df-fbas 21270 df-top 22790 df-cld 22917 df-ntr 22918 df-cls 22919 df-nei 22996 df-fil 23744 df-flim 23837 df-fcls 23839 |
This theorem is referenced by: fclsfnflim 23925 flimfnfcls 23926 uffclsflim 23929 flfssfcf 23936 cnpfcf 23939 cfilfcls 25196 |
Copyright terms: Public domain | W3C validator |