MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimfcls Structured version   Visualization version   GIF version

Theorem flimfcls 22629
Description: A limit point is a cluster point. (Contributed by Jeff Hankins, 12-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
flimfcls (𝐽 fLim 𝐹) ⊆ (𝐽 fClus 𝐹)

Proof of Theorem flimfcls
Dummy variables 𝑥 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 flimtop 22568 . . 3 (𝑎 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top)
2 eqid 2822 . . . 4 𝐽 = 𝐽
32flimfil 22572 . . 3 (𝑎 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘ 𝐽))
4 flimclsi 22581 . . . . . 6 (𝑥𝐹 → (𝐽 fLim 𝐹) ⊆ ((cls‘𝐽)‘𝑥))
54sseld 3941 . . . . 5 (𝑥𝐹 → (𝑎 ∈ (𝐽 fLim 𝐹) → 𝑎 ∈ ((cls‘𝐽)‘𝑥)))
65com12 32 . . . 4 (𝑎 ∈ (𝐽 fLim 𝐹) → (𝑥𝐹𝑎 ∈ ((cls‘𝐽)‘𝑥)))
76ralrimiv 3173 . . 3 (𝑎 ∈ (𝐽 fLim 𝐹) → ∀𝑥𝐹 𝑎 ∈ ((cls‘𝐽)‘𝑥))
82isfcls 22612 . . 3 (𝑎 ∈ (𝐽 fClus 𝐹) ↔ (𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘ 𝐽) ∧ ∀𝑥𝐹 𝑎 ∈ ((cls‘𝐽)‘𝑥)))
91, 3, 7, 8syl3anbrc 1340 . 2 (𝑎 ∈ (𝐽 fLim 𝐹) → 𝑎 ∈ (𝐽 fClus 𝐹))
109ssriv 3946 1 (𝐽 fLim 𝐹) ⊆ (𝐽 fClus 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wcel 2114  wral 3130  wss 3908   cuni 4813  cfv 6334  (class class class)co 7140  Topctop 21496  clsccl 21621  Filcfil 22448   fLim cflim 22537   fClus cfcls 22539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-iin 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-ov 7143  df-oprab 7144  df-mpo 7145  df-fbas 20086  df-top 21497  df-cld 21622  df-ntr 21623  df-cls 21624  df-nei 21701  df-fil 22449  df-flim 22542  df-fcls 22544
This theorem is referenced by:  fclsfnflim  22630  flimfnfcls  22631  uffclsflim  22634  flfssfcf  22641  cnpfcf  22644  cfilfcls  23876
  Copyright terms: Public domain W3C validator