| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > flimfcls | Structured version Visualization version GIF version | ||
| Description: A limit point is a cluster point. (Contributed by Jeff Hankins, 12-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
| Ref | Expression |
|---|---|
| flimfcls | ⊢ (𝐽 fLim 𝐹) ⊆ (𝐽 fClus 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flimtop 23881 | . . 3 ⊢ (𝑎 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top) | |
| 2 | eqid 2733 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 3 | 2 | flimfil 23885 | . . 3 ⊢ (𝑎 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘∪ 𝐽)) |
| 4 | flimclsi 23894 | . . . . . 6 ⊢ (𝑥 ∈ 𝐹 → (𝐽 fLim 𝐹) ⊆ ((cls‘𝐽)‘𝑥)) | |
| 5 | 4 | sseld 3929 | . . . . 5 ⊢ (𝑥 ∈ 𝐹 → (𝑎 ∈ (𝐽 fLim 𝐹) → 𝑎 ∈ ((cls‘𝐽)‘𝑥))) |
| 6 | 5 | com12 32 | . . . 4 ⊢ (𝑎 ∈ (𝐽 fLim 𝐹) → (𝑥 ∈ 𝐹 → 𝑎 ∈ ((cls‘𝐽)‘𝑥))) |
| 7 | 6 | ralrimiv 3124 | . . 3 ⊢ (𝑎 ∈ (𝐽 fLim 𝐹) → ∀𝑥 ∈ 𝐹 𝑎 ∈ ((cls‘𝐽)‘𝑥)) |
| 8 | 2 | isfcls 23925 | . . 3 ⊢ (𝑎 ∈ (𝐽 fClus 𝐹) ↔ (𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘∪ 𝐽) ∧ ∀𝑥 ∈ 𝐹 𝑎 ∈ ((cls‘𝐽)‘𝑥))) |
| 9 | 1, 3, 7, 8 | syl3anbrc 1344 | . 2 ⊢ (𝑎 ∈ (𝐽 fLim 𝐹) → 𝑎 ∈ (𝐽 fClus 𝐹)) |
| 10 | 9 | ssriv 3934 | 1 ⊢ (𝐽 fLim 𝐹) ⊆ (𝐽 fClus 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 ∀wral 3048 ⊆ wss 3898 ∪ cuni 4858 ‘cfv 6486 (class class class)co 7352 Topctop 22809 clsccl 22934 Filcfil 23761 fLim cflim 23850 fClus cfcls 23852 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-fbas 21290 df-top 22810 df-cld 22935 df-ntr 22936 df-cls 22937 df-nei 23014 df-fil 23762 df-flim 23855 df-fcls 23857 |
| This theorem is referenced by: fclsfnflim 23943 flimfnfcls 23944 uffclsflim 23947 flfssfcf 23954 cnpfcf 23957 cfilfcls 25202 |
| Copyright terms: Public domain | W3C validator |