| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > flimfcls | Structured version Visualization version GIF version | ||
| Description: A limit point is a cluster point. (Contributed by Jeff Hankins, 12-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
| Ref | Expression |
|---|---|
| flimfcls | ⊢ (𝐽 fLim 𝐹) ⊆ (𝐽 fClus 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flimtop 23852 | . . 3 ⊢ (𝑎 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top) | |
| 2 | eqid 2729 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 3 | 2 | flimfil 23856 | . . 3 ⊢ (𝑎 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘∪ 𝐽)) |
| 4 | flimclsi 23865 | . . . . . 6 ⊢ (𝑥 ∈ 𝐹 → (𝐽 fLim 𝐹) ⊆ ((cls‘𝐽)‘𝑥)) | |
| 5 | 4 | sseld 3945 | . . . . 5 ⊢ (𝑥 ∈ 𝐹 → (𝑎 ∈ (𝐽 fLim 𝐹) → 𝑎 ∈ ((cls‘𝐽)‘𝑥))) |
| 6 | 5 | com12 32 | . . . 4 ⊢ (𝑎 ∈ (𝐽 fLim 𝐹) → (𝑥 ∈ 𝐹 → 𝑎 ∈ ((cls‘𝐽)‘𝑥))) |
| 7 | 6 | ralrimiv 3124 | . . 3 ⊢ (𝑎 ∈ (𝐽 fLim 𝐹) → ∀𝑥 ∈ 𝐹 𝑎 ∈ ((cls‘𝐽)‘𝑥)) |
| 8 | 2 | isfcls 23896 | . . 3 ⊢ (𝑎 ∈ (𝐽 fClus 𝐹) ↔ (𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘∪ 𝐽) ∧ ∀𝑥 ∈ 𝐹 𝑎 ∈ ((cls‘𝐽)‘𝑥))) |
| 9 | 1, 3, 7, 8 | syl3anbrc 1344 | . 2 ⊢ (𝑎 ∈ (𝐽 fLim 𝐹) → 𝑎 ∈ (𝐽 fClus 𝐹)) |
| 10 | 9 | ssriv 3950 | 1 ⊢ (𝐽 fLim 𝐹) ⊆ (𝐽 fClus 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∀wral 3044 ⊆ wss 3914 ∪ cuni 4871 ‘cfv 6511 (class class class)co 7387 Topctop 22780 clsccl 22905 Filcfil 23732 fLim cflim 23821 fClus cfcls 23823 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-fbas 21261 df-top 22781 df-cld 22906 df-ntr 22907 df-cls 22908 df-nei 22985 df-fil 23733 df-flim 23826 df-fcls 23828 |
| This theorem is referenced by: fclsfnflim 23914 flimfnfcls 23915 uffclsflim 23918 flfssfcf 23925 cnpfcf 23928 cfilfcls 25174 |
| Copyright terms: Public domain | W3C validator |