Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > flimfcls | Structured version Visualization version GIF version |
Description: A limit point is a cluster point. (Contributed by Jeff Hankins, 12-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
Ref | Expression |
---|---|
flimfcls | ⊢ (𝐽 fLim 𝐹) ⊆ (𝐽 fClus 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flimtop 23127 | . . 3 ⊢ (𝑎 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top) | |
2 | eqid 2740 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
3 | 2 | flimfil 23131 | . . 3 ⊢ (𝑎 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘∪ 𝐽)) |
4 | flimclsi 23140 | . . . . . 6 ⊢ (𝑥 ∈ 𝐹 → (𝐽 fLim 𝐹) ⊆ ((cls‘𝐽)‘𝑥)) | |
5 | 4 | sseld 3925 | . . . . 5 ⊢ (𝑥 ∈ 𝐹 → (𝑎 ∈ (𝐽 fLim 𝐹) → 𝑎 ∈ ((cls‘𝐽)‘𝑥))) |
6 | 5 | com12 32 | . . . 4 ⊢ (𝑎 ∈ (𝐽 fLim 𝐹) → (𝑥 ∈ 𝐹 → 𝑎 ∈ ((cls‘𝐽)‘𝑥))) |
7 | 6 | ralrimiv 3109 | . . 3 ⊢ (𝑎 ∈ (𝐽 fLim 𝐹) → ∀𝑥 ∈ 𝐹 𝑎 ∈ ((cls‘𝐽)‘𝑥)) |
8 | 2 | isfcls 23171 | . . 3 ⊢ (𝑎 ∈ (𝐽 fClus 𝐹) ↔ (𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘∪ 𝐽) ∧ ∀𝑥 ∈ 𝐹 𝑎 ∈ ((cls‘𝐽)‘𝑥))) |
9 | 1, 3, 7, 8 | syl3anbrc 1342 | . 2 ⊢ (𝑎 ∈ (𝐽 fLim 𝐹) → 𝑎 ∈ (𝐽 fClus 𝐹)) |
10 | 9 | ssriv 3930 | 1 ⊢ (𝐽 fLim 𝐹) ⊆ (𝐽 fClus 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2110 ∀wral 3066 ⊆ wss 3892 ∪ cuni 4845 ‘cfv 6432 (class class class)co 7272 Topctop 22053 clsccl 22180 Filcfil 23007 fLim cflim 23096 fClus cfcls 23098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7583 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7275 df-oprab 7276 df-mpo 7277 df-fbas 20605 df-top 22054 df-cld 22181 df-ntr 22182 df-cls 22183 df-nei 22260 df-fil 23008 df-flim 23101 df-fcls 23103 |
This theorem is referenced by: fclsfnflim 23189 flimfnfcls 23190 uffclsflim 23193 flfssfcf 23200 cnpfcf 23203 cfilfcls 24449 |
Copyright terms: Public domain | W3C validator |