MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimfcls Structured version   Visualization version   GIF version

Theorem flimfcls 23177
Description: A limit point is a cluster point. (Contributed by Jeff Hankins, 12-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
flimfcls (𝐽 fLim 𝐹) ⊆ (𝐽 fClus 𝐹)

Proof of Theorem flimfcls
Dummy variables 𝑥 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 flimtop 23116 . . 3 (𝑎 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top)
2 eqid 2738 . . . 4 𝐽 = 𝐽
32flimfil 23120 . . 3 (𝑎 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘ 𝐽))
4 flimclsi 23129 . . . . . 6 (𝑥𝐹 → (𝐽 fLim 𝐹) ⊆ ((cls‘𝐽)‘𝑥))
54sseld 3920 . . . . 5 (𝑥𝐹 → (𝑎 ∈ (𝐽 fLim 𝐹) → 𝑎 ∈ ((cls‘𝐽)‘𝑥)))
65com12 32 . . . 4 (𝑎 ∈ (𝐽 fLim 𝐹) → (𝑥𝐹𝑎 ∈ ((cls‘𝐽)‘𝑥)))
76ralrimiv 3102 . . 3 (𝑎 ∈ (𝐽 fLim 𝐹) → ∀𝑥𝐹 𝑎 ∈ ((cls‘𝐽)‘𝑥))
82isfcls 23160 . . 3 (𝑎 ∈ (𝐽 fClus 𝐹) ↔ (𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘ 𝐽) ∧ ∀𝑥𝐹 𝑎 ∈ ((cls‘𝐽)‘𝑥)))
91, 3, 7, 8syl3anbrc 1342 . 2 (𝑎 ∈ (𝐽 fLim 𝐹) → 𝑎 ∈ (𝐽 fClus 𝐹))
109ssriv 3925 1 (𝐽 fLim 𝐹) ⊆ (𝐽 fClus 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  wral 3064  wss 3887   cuni 4839  cfv 6433  (class class class)co 7275  Topctop 22042  clsccl 22169  Filcfil 22996   fLim cflim 23085   fClus cfcls 23087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-fbas 20594  df-top 22043  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-fil 22997  df-flim 23090  df-fcls 23092
This theorem is referenced by:  fclsfnflim  23178  flimfnfcls  23179  uffclsflim  23182  flfssfcf  23189  cnpfcf  23192  cfilfcls  24438
  Copyright terms: Public domain W3C validator