MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimfcls Structured version   Visualization version   GIF version

Theorem flimfcls 23085
Description: A limit point is a cluster point. (Contributed by Jeff Hankins, 12-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
flimfcls (𝐽 fLim 𝐹) ⊆ (𝐽 fClus 𝐹)

Proof of Theorem flimfcls
Dummy variables 𝑥 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 flimtop 23024 . . 3 (𝑎 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top)
2 eqid 2738 . . . 4 𝐽 = 𝐽
32flimfil 23028 . . 3 (𝑎 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘ 𝐽))
4 flimclsi 23037 . . . . . 6 (𝑥𝐹 → (𝐽 fLim 𝐹) ⊆ ((cls‘𝐽)‘𝑥))
54sseld 3916 . . . . 5 (𝑥𝐹 → (𝑎 ∈ (𝐽 fLim 𝐹) → 𝑎 ∈ ((cls‘𝐽)‘𝑥)))
65com12 32 . . . 4 (𝑎 ∈ (𝐽 fLim 𝐹) → (𝑥𝐹𝑎 ∈ ((cls‘𝐽)‘𝑥)))
76ralrimiv 3106 . . 3 (𝑎 ∈ (𝐽 fLim 𝐹) → ∀𝑥𝐹 𝑎 ∈ ((cls‘𝐽)‘𝑥))
82isfcls 23068 . . 3 (𝑎 ∈ (𝐽 fClus 𝐹) ↔ (𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘ 𝐽) ∧ ∀𝑥𝐹 𝑎 ∈ ((cls‘𝐽)‘𝑥)))
91, 3, 7, 8syl3anbrc 1341 . 2 (𝑎 ∈ (𝐽 fLim 𝐹) → 𝑎 ∈ (𝐽 fClus 𝐹))
109ssriv 3921 1 (𝐽 fLim 𝐹) ⊆ (𝐽 fClus 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  wral 3063  wss 3883   cuni 4836  cfv 6418  (class class class)co 7255  Topctop 21950  clsccl 22077  Filcfil 22904   fLim cflim 22993   fClus cfcls 22995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-fbas 20507  df-top 21951  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-fil 22905  df-flim 22998  df-fcls 23000
This theorem is referenced by:  fclsfnflim  23086  flimfnfcls  23087  uffclsflim  23090  flfssfcf  23097  cnpfcf  23100  cfilfcls  24343
  Copyright terms: Public domain W3C validator