MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimfcls Structured version   Visualization version   GIF version

Theorem flimfcls 23969
Description: A limit point is a cluster point. (Contributed by Jeff Hankins, 12-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
flimfcls (𝐽 fLim 𝐹) ⊆ (𝐽 fClus 𝐹)

Proof of Theorem flimfcls
Dummy variables 𝑥 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 flimtop 23908 . . 3 (𝑎 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top)
2 eqid 2736 . . . 4 𝐽 = 𝐽
32flimfil 23912 . . 3 (𝑎 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘ 𝐽))
4 flimclsi 23921 . . . . . 6 (𝑥𝐹 → (𝐽 fLim 𝐹) ⊆ ((cls‘𝐽)‘𝑥))
54sseld 3962 . . . . 5 (𝑥𝐹 → (𝑎 ∈ (𝐽 fLim 𝐹) → 𝑎 ∈ ((cls‘𝐽)‘𝑥)))
65com12 32 . . . 4 (𝑎 ∈ (𝐽 fLim 𝐹) → (𝑥𝐹𝑎 ∈ ((cls‘𝐽)‘𝑥)))
76ralrimiv 3132 . . 3 (𝑎 ∈ (𝐽 fLim 𝐹) → ∀𝑥𝐹 𝑎 ∈ ((cls‘𝐽)‘𝑥))
82isfcls 23952 . . 3 (𝑎 ∈ (𝐽 fClus 𝐹) ↔ (𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘ 𝐽) ∧ ∀𝑥𝐹 𝑎 ∈ ((cls‘𝐽)‘𝑥)))
91, 3, 7, 8syl3anbrc 1344 . 2 (𝑎 ∈ (𝐽 fLim 𝐹) → 𝑎 ∈ (𝐽 fClus 𝐹))
109ssriv 3967 1 (𝐽 fLim 𝐹) ⊆ (𝐽 fClus 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  wral 3052  wss 3931   cuni 4888  cfv 6536  (class class class)co 7410  Topctop 22836  clsccl 22961  Filcfil 23788   fLim cflim 23877   fClus cfcls 23879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-fbas 21317  df-top 22837  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-fil 23789  df-flim 23882  df-fcls 23884
This theorem is referenced by:  fclsfnflim  23970  flimfnfcls  23971  uffclsflim  23974  flfssfcf  23981  cnpfcf  23984  cfilfcls  25231
  Copyright terms: Public domain W3C validator