| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > flimfcls | Structured version Visualization version GIF version | ||
| Description: A limit point is a cluster point. (Contributed by Jeff Hankins, 12-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
| Ref | Expression |
|---|---|
| flimfcls | ⊢ (𝐽 fLim 𝐹) ⊆ (𝐽 fClus 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flimtop 23938 | . . 3 ⊢ (𝑎 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top) | |
| 2 | eqid 2734 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 3 | 2 | flimfil 23942 | . . 3 ⊢ (𝑎 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘∪ 𝐽)) |
| 4 | flimclsi 23951 | . . . . . 6 ⊢ (𝑥 ∈ 𝐹 → (𝐽 fLim 𝐹) ⊆ ((cls‘𝐽)‘𝑥)) | |
| 5 | 4 | sseld 3964 | . . . . 5 ⊢ (𝑥 ∈ 𝐹 → (𝑎 ∈ (𝐽 fLim 𝐹) → 𝑎 ∈ ((cls‘𝐽)‘𝑥))) |
| 6 | 5 | com12 32 | . . . 4 ⊢ (𝑎 ∈ (𝐽 fLim 𝐹) → (𝑥 ∈ 𝐹 → 𝑎 ∈ ((cls‘𝐽)‘𝑥))) |
| 7 | 6 | ralrimiv 3132 | . . 3 ⊢ (𝑎 ∈ (𝐽 fLim 𝐹) → ∀𝑥 ∈ 𝐹 𝑎 ∈ ((cls‘𝐽)‘𝑥)) |
| 8 | 2 | isfcls 23982 | . . 3 ⊢ (𝑎 ∈ (𝐽 fClus 𝐹) ↔ (𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘∪ 𝐽) ∧ ∀𝑥 ∈ 𝐹 𝑎 ∈ ((cls‘𝐽)‘𝑥))) |
| 9 | 1, 3, 7, 8 | syl3anbrc 1343 | . 2 ⊢ (𝑎 ∈ (𝐽 fLim 𝐹) → 𝑎 ∈ (𝐽 fClus 𝐹)) |
| 10 | 9 | ssriv 3969 | 1 ⊢ (𝐽 fLim 𝐹) ⊆ (𝐽 fClus 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 ∀wral 3050 ⊆ wss 3933 ∪ cuni 4889 ‘cfv 6542 (class class class)co 7414 Topctop 22866 clsccl 22991 Filcfil 23818 fLim cflim 23907 fClus cfcls 23909 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-iin 4976 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-fbas 21328 df-top 22867 df-cld 22992 df-ntr 22993 df-cls 22994 df-nei 23071 df-fil 23819 df-flim 23912 df-fcls 23914 |
| This theorem is referenced by: fclsfnflim 24000 flimfnfcls 24001 uffclsflim 24004 flfssfcf 24011 cnpfcf 24014 cfilfcls 25263 |
| Copyright terms: Public domain | W3C validator |