| Step | Hyp | Ref
| Expression |
| 1 | | eqeq1 2738 |
. . . . . 6
⊢ (𝑤 = 𝐴 → (𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ↔ 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉)) |
| 2 | 1 | anbi1d 631 |
. . . . 5
⊢ (𝑤 = 𝐴 → ((𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) ↔ (𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑))) |
| 3 | 2 | 3exbidv 1924 |
. . . 4
⊢ (𝑤 = 𝐴 → (∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦∃𝑧(𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑))) |
| 4 | | df-oprab 7417 |
. . . 4
⊢
{〈〈𝑥,
𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} |
| 5 | 3, 4 | elab2g 3663 |
. . 3
⊢ (𝐴 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} → (𝐴 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦∃𝑧(𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑))) |
| 6 | 5 | ibi 267 |
. 2
⊢ (𝐴 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} → ∃𝑥∃𝑦∃𝑧(𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)) |
| 7 | | id 22 |
. . . . . 6
⊢ (𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 → 𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉) |
| 8 | | opex 5449 |
. . . . . . . . . . 11
⊢
〈𝑥, 𝑦〉 ∈ V |
| 9 | | vex 3467 |
. . . . . . . . . . 11
⊢ 𝑧 ∈ V |
| 10 | 8, 9 | op1std 8006 |
. . . . . . . . . 10
⊢ (𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 → (1st ‘𝐴) = 〈𝑥, 𝑦〉) |
| 11 | 10 | fveq2d 6890 |
. . . . . . . . 9
⊢ (𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 → (1st
‘(1st ‘𝐴)) = (1st ‘〈𝑥, 𝑦〉)) |
| 12 | | vex 3467 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
| 13 | | vex 3467 |
. . . . . . . . . 10
⊢ 𝑦 ∈ V |
| 14 | 12, 13 | op1st 8004 |
. . . . . . . . 9
⊢
(1st ‘〈𝑥, 𝑦〉) = 𝑥 |
| 15 | 11, 14 | eqtr2di 2786 |
. . . . . . . 8
⊢ (𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 → 𝑥 = (1st ‘(1st
‘𝐴))) |
| 16 | 10 | fveq2d 6890 |
. . . . . . . . 9
⊢ (𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 → (2nd
‘(1st ‘𝐴)) = (2nd ‘〈𝑥, 𝑦〉)) |
| 17 | 12, 13 | op2nd 8005 |
. . . . . . . . 9
⊢
(2nd ‘〈𝑥, 𝑦〉) = 𝑦 |
| 18 | 16, 17 | eqtr2di 2786 |
. . . . . . . 8
⊢ (𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 → 𝑦 = (2nd ‘(1st
‘𝐴))) |
| 19 | 15, 18 | opeq12d 4861 |
. . . . . . 7
⊢ (𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 → 〈𝑥, 𝑦〉 = 〈(1st
‘(1st ‘𝐴)), (2nd ‘(1st
‘𝐴))〉) |
| 20 | 8, 9 | op2ndd 8007 |
. . . . . . . 8
⊢ (𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 → (2nd ‘𝐴) = 𝑧) |
| 21 | 20 | eqcomd 2740 |
. . . . . . 7
⊢ (𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 → 𝑧 = (2nd ‘𝐴)) |
| 22 | 19, 21 | opeq12d 4861 |
. . . . . 6
⊢ (𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 → 〈〈𝑥, 𝑦〉, 𝑧〉 = 〈〈(1st
‘(1st ‘𝐴)), (2nd ‘(1st
‘𝐴))〉,
(2nd ‘𝐴)〉) |
| 23 | 7, 22 | eqtrd 2769 |
. . . . 5
⊢ (𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 → 𝐴 = 〈〈(1st
‘(1st ‘𝐴)), (2nd ‘(1st
‘𝐴))〉,
(2nd ‘𝐴)〉) |
| 24 | 23 | adantr 480 |
. . . 4
⊢ ((𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) → 𝐴 = 〈〈(1st
‘(1st ‘𝐴)), (2nd ‘(1st
‘𝐴))〉,
(2nd ‘𝐴)〉) |
| 25 | 24 | exlimiv 1929 |
. . 3
⊢
(∃𝑧(𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) → 𝐴 = 〈〈(1st
‘(1st ‘𝐴)), (2nd ‘(1st
‘𝐴))〉,
(2nd ‘𝐴)〉) |
| 26 | 25 | exlimivv 1931 |
. 2
⊢
(∃𝑥∃𝑦∃𝑧(𝐴 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) → 𝐴 = 〈〈(1st
‘(1st ‘𝐴)), (2nd ‘(1st
‘𝐴))〉,
(2nd ‘𝐴)〉) |
| 27 | 6, 26 | syl 17 |
1
⊢ (𝐴 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} → 𝐴 = 〈〈(1st
‘(1st ‘𝐴)), (2nd ‘(1st
‘𝐴))〉,
(2nd ‘𝐴)〉) |