Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eloprab1st2nd Structured version   Visualization version   GIF version

Theorem eloprab1st2nd 48872
Description: Reconstruction of a nested ordered pair in terms of its ordered pair components. (Contributed by Zhi Wang, 27-Oct-2025.)
Assertion
Ref Expression
eloprab1st2nd (𝐴 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} → 𝐴 = ⟨⟨(1st ‘(1st𝐴)), (2nd ‘(1st𝐴))⟩, (2nd𝐴)⟩)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝑧,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem eloprab1st2nd
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2733 . . . . . 6 (𝑤 = 𝐴 → (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩))
21anbi1d 631 . . . . 5 (𝑤 = 𝐴 → ((𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)))
323exbidv 1925 . . . 4 (𝑤 = 𝐴 → (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝑧(𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)))
4 df-oprab 7357 . . . 4 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
53, 4elab2g 3638 . . 3 (𝐴 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} → (𝐴 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ ∃𝑥𝑦𝑧(𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)))
65ibi 267 . 2 (𝐴 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} → ∃𝑥𝑦𝑧(𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
7 id 22 . . . . . 6 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
8 opex 5411 . . . . . . . . . . 11 𝑥, 𝑦⟩ ∈ V
9 vex 3442 . . . . . . . . . . 11 𝑧 ∈ V
108, 9op1std 7941 . . . . . . . . . 10 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (1st𝐴) = ⟨𝑥, 𝑦⟩)
1110fveq2d 6830 . . . . . . . . 9 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (1st ‘(1st𝐴)) = (1st ‘⟨𝑥, 𝑦⟩))
12 vex 3442 . . . . . . . . . 10 𝑥 ∈ V
13 vex 3442 . . . . . . . . . 10 𝑦 ∈ V
1412, 13op1st 7939 . . . . . . . . 9 (1st ‘⟨𝑥, 𝑦⟩) = 𝑥
1511, 14eqtr2di 2781 . . . . . . . 8 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → 𝑥 = (1st ‘(1st𝐴)))
1610fveq2d 6830 . . . . . . . . 9 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (2nd ‘(1st𝐴)) = (2nd ‘⟨𝑥, 𝑦⟩))
1712, 13op2nd 7940 . . . . . . . . 9 (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦
1816, 17eqtr2di 2781 . . . . . . . 8 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → 𝑦 = (2nd ‘(1st𝐴)))
1915, 18opeq12d 4835 . . . . . . 7 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → ⟨𝑥, 𝑦⟩ = ⟨(1st ‘(1st𝐴)), (2nd ‘(1st𝐴))⟩)
208, 9op2ndd 7942 . . . . . . . 8 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (2nd𝐴) = 𝑧)
2120eqcomd 2735 . . . . . . 7 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → 𝑧 = (2nd𝐴))
2219, 21opeq12d 4835 . . . . . 6 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ = ⟨⟨(1st ‘(1st𝐴)), (2nd ‘(1st𝐴))⟩, (2nd𝐴)⟩)
237, 22eqtrd 2764 . . . . 5 (𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → 𝐴 = ⟨⟨(1st ‘(1st𝐴)), (2nd ‘(1st𝐴))⟩, (2nd𝐴)⟩)
2423adantr 480 . . . 4 ((𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → 𝐴 = ⟨⟨(1st ‘(1st𝐴)), (2nd ‘(1st𝐴))⟩, (2nd𝐴)⟩)
2524exlimiv 1930 . . 3 (∃𝑧(𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → 𝐴 = ⟨⟨(1st ‘(1st𝐴)), (2nd ‘(1st𝐴))⟩, (2nd𝐴)⟩)
2625exlimivv 1932 . 2 (∃𝑥𝑦𝑧(𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → 𝐴 = ⟨⟨(1st ‘(1st𝐴)), (2nd ‘(1st𝐴))⟩, (2nd𝐴)⟩)
276, 26syl 17 1 (𝐴 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} → 𝐴 = ⟨⟨(1st ‘(1st𝐴)), (2nd ‘(1st𝐴))⟩, (2nd𝐴)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  cop 4585  cfv 6486  {coprab 7354  1st c1st 7929  2nd c2nd 7930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fv 6494  df-oprab 7357  df-1st 7931  df-2nd 7932
This theorem is referenced by:  sectpropdlem  49041  invpropdlem  49043  isopropdlem  49045
  Copyright terms: Public domain W3C validator