Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmtop2 Structured version   Visualization version   GIF version

Theorem cvmtop2 35225
Description: Reverse closure for a covering map. (Contributed by Mario Carneiro, 13-Feb-2015.)
Assertion
Ref Expression
cvmtop2 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐽 ∈ Top)

Proof of Theorem cvmtop2
StepHypRef Expression
1 n0i 4320 . . 3 (𝐹 ∈ (𝐶 CovMap 𝐽) → ¬ (𝐶 CovMap 𝐽) = ∅)
2 fncvm 35221 . . . . 5 CovMap Fn (Top × Top)
32fndmi 6652 . . . 4 dom CovMap = (Top × Top)
43ndmov 7599 . . 3 (¬ (𝐶 ∈ Top ∧ 𝐽 ∈ Top) → (𝐶 CovMap 𝐽) = ∅)
51, 4nsyl2 141 . 2 (𝐹 ∈ (𝐶 CovMap 𝐽) → (𝐶 ∈ Top ∧ 𝐽 ∈ Top))
65simprd 495 1 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  c0 4313   × cxp 5663  (class class class)co 7413  Topctop 22847   CovMap ccvm 35219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-cvm 35220
This theorem is referenced by:  cvmsf1o  35236  cvmsss2  35238  cvmcov2  35239  cvmopnlem  35242  cvmliftlem8  35256  cvmlift3lem9  35291
  Copyright terms: Public domain W3C validator