Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmtop2 Structured version   Visualization version   GIF version

Theorem cvmtop2 32936
Description: Reverse closure for a covering map. (Contributed by Mario Carneiro, 13-Feb-2015.)
Assertion
Ref Expression
cvmtop2 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐽 ∈ Top)

Proof of Theorem cvmtop2
StepHypRef Expression
1 n0i 4248 . . 3 (𝐹 ∈ (𝐶 CovMap 𝐽) → ¬ (𝐶 CovMap 𝐽) = ∅)
2 fncvm 32932 . . . . 5 CovMap Fn (Top × Top)
32fndmi 6482 . . . 4 dom CovMap = (Top × Top)
43ndmov 7392 . . 3 (¬ (𝐶 ∈ Top ∧ 𝐽 ∈ Top) → (𝐶 CovMap 𝐽) = ∅)
51, 4nsyl2 143 . 2 (𝐹 ∈ (𝐶 CovMap 𝐽) → (𝐶 ∈ Top ∧ 𝐽 ∈ Top))
65simprd 499 1 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  c0 4237   × cxp 5549  (class class class)co 7213  Topctop 21790   CovMap ccvm 32930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-1st 7761  df-2nd 7762  df-cvm 32931
This theorem is referenced by:  cvmsf1o  32947  cvmsss2  32949  cvmcov2  32950  cvmopnlem  32953  cvmliftlem8  32967  cvmlift3lem9  33002
  Copyright terms: Public domain W3C validator