Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmtop2 Structured version   Visualization version   GIF version

Theorem cvmtop2 32118
Description: Reverse closure for a covering map. (Contributed by Mario Carneiro, 13-Feb-2015.)
Assertion
Ref Expression
cvmtop2 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐽 ∈ Top)

Proof of Theorem cvmtop2
StepHypRef Expression
1 n0i 4225 . . 3 (𝐹 ∈ (𝐶 CovMap 𝐽) → ¬ (𝐶 CovMap 𝐽) = ∅)
2 fncvm 32114 . . . . 5 CovMap Fn (Top × Top)
3 fndm 6332 . . . . 5 ( CovMap Fn (Top × Top) → dom CovMap = (Top × Top))
42, 3ax-mp 5 . . . 4 dom CovMap = (Top × Top)
54ndmov 7195 . . 3 (¬ (𝐶 ∈ Top ∧ 𝐽 ∈ Top) → (𝐶 CovMap 𝐽) = ∅)
61, 5nsyl2 143 . 2 (𝐹 ∈ (𝐶 CovMap 𝐽) → (𝐶 ∈ Top ∧ 𝐽 ∈ Top))
76simprd 496 1 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1525  wcel 2083  c0 4217   × cxp 5448  dom cdm 5450   Fn wfn 6227  (class class class)co 7023  Topctop 21189   CovMap ccvm 32112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-id 5355  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-fv 6240  df-ov 7026  df-oprab 7027  df-mpo 7028  df-1st 7552  df-2nd 7553  df-cvm 32113
This theorem is referenced by:  cvmsf1o  32129  cvmsss2  32131  cvmcov2  32132  cvmopnlem  32135  cvmliftlem8  32149  cvmlift3lem9  32184
  Copyright terms: Public domain W3C validator