Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmtop1 Structured version   Visualization version   GIF version

Theorem cvmtop1 34537
Description: Reverse closure for a covering map. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
cvmtop1 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top)

Proof of Theorem cvmtop1
StepHypRef Expression
1 n0i 4333 . . 3 (𝐹 ∈ (𝐶 CovMap 𝐽) → ¬ (𝐶 CovMap 𝐽) = ∅)
2 fncvm 34534 . . . . 5 CovMap Fn (Top × Top)
32fndmi 6653 . . . 4 dom CovMap = (Top × Top)
43ndmov 7593 . . 3 (¬ (𝐶 ∈ Top ∧ 𝐽 ∈ Top) → (𝐶 CovMap 𝐽) = ∅)
51, 4nsyl2 141 . 2 (𝐹 ∈ (𝐶 CovMap 𝐽) → (𝐶 ∈ Top ∧ 𝐽 ∈ Top))
65simpld 495 1 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  c0 4322   × cxp 5674  (class class class)co 7411  Topctop 22615   CovMap ccvm 34532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-cvm 34533
This theorem is referenced by:  cvmsf1o  34549  cvmscld  34550  cvmsss2  34551  cvmopnlem  34555  cvmliftmolem1  34558  cvmliftlem8  34569  cvmlift2lem9a  34580  cvmlift2lem9  34588  cvmlift2lem11  34590  cvmlift2lem12  34591  cvmliftphtlem  34594  cvmlift3lem6  34601  cvmlift3lem8  34603  cvmlift3lem9  34604
  Copyright terms: Public domain W3C validator