![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnmptfvd | Structured version Visualization version GIF version |
Description: A function with a given domain is a mapping defined by its function values. (Contributed by AV, 1-Mar-2019.) |
Ref | Expression |
---|---|
fnmptfvd.m | ⊢ (𝜑 → 𝑀 Fn 𝐴) |
fnmptfvd.s | ⊢ (𝑖 = 𝑎 → 𝐷 = 𝐶) |
fnmptfvd.d | ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → 𝐷 ∈ 𝑈) |
fnmptfvd.c | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝐶 ∈ 𝑉) |
Ref | Expression |
---|---|
fnmptfvd | ⊢ (𝜑 → (𝑀 = (𝑎 ∈ 𝐴 ↦ 𝐶) ↔ ∀𝑖 ∈ 𝐴 (𝑀‘𝑖) = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnmptfvd.m | . . 3 ⊢ (𝜑 → 𝑀 Fn 𝐴) | |
2 | fnmptfvd.c | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝐶 ∈ 𝑉) | |
3 | 2 | ralrimiva 3142 | . . . 4 ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 𝐶 ∈ 𝑉) |
4 | eqid 2728 | . . . . 5 ⊢ (𝑎 ∈ 𝐴 ↦ 𝐶) = (𝑎 ∈ 𝐴 ↦ 𝐶) | |
5 | 4 | fnmpt 6689 | . . . 4 ⊢ (∀𝑎 ∈ 𝐴 𝐶 ∈ 𝑉 → (𝑎 ∈ 𝐴 ↦ 𝐶) Fn 𝐴) |
6 | 3, 5 | syl 17 | . . 3 ⊢ (𝜑 → (𝑎 ∈ 𝐴 ↦ 𝐶) Fn 𝐴) |
7 | eqfnfv 7034 | . . 3 ⊢ ((𝑀 Fn 𝐴 ∧ (𝑎 ∈ 𝐴 ↦ 𝐶) Fn 𝐴) → (𝑀 = (𝑎 ∈ 𝐴 ↦ 𝐶) ↔ ∀𝑖 ∈ 𝐴 (𝑀‘𝑖) = ((𝑎 ∈ 𝐴 ↦ 𝐶)‘𝑖))) | |
8 | 1, 6, 7 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝑀 = (𝑎 ∈ 𝐴 ↦ 𝐶) ↔ ∀𝑖 ∈ 𝐴 (𝑀‘𝑖) = ((𝑎 ∈ 𝐴 ↦ 𝐶)‘𝑖))) |
9 | fnmptfvd.s | . . . . . . . 8 ⊢ (𝑖 = 𝑎 → 𝐷 = 𝐶) | |
10 | 9 | cbvmptv 5255 | . . . . . . 7 ⊢ (𝑖 ∈ 𝐴 ↦ 𝐷) = (𝑎 ∈ 𝐴 ↦ 𝐶) |
11 | 10 | eqcomi 2737 | . . . . . 6 ⊢ (𝑎 ∈ 𝐴 ↦ 𝐶) = (𝑖 ∈ 𝐴 ↦ 𝐷) |
12 | 11 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑎 ∈ 𝐴 ↦ 𝐶) = (𝑖 ∈ 𝐴 ↦ 𝐷)) |
13 | 12 | fveq1d 6893 | . . . 4 ⊢ (𝜑 → ((𝑎 ∈ 𝐴 ↦ 𝐶)‘𝑖) = ((𝑖 ∈ 𝐴 ↦ 𝐷)‘𝑖)) |
14 | 13 | eqeq2d 2739 | . . 3 ⊢ (𝜑 → ((𝑀‘𝑖) = ((𝑎 ∈ 𝐴 ↦ 𝐶)‘𝑖) ↔ (𝑀‘𝑖) = ((𝑖 ∈ 𝐴 ↦ 𝐷)‘𝑖))) |
15 | 14 | ralbidv 3173 | . 2 ⊢ (𝜑 → (∀𝑖 ∈ 𝐴 (𝑀‘𝑖) = ((𝑎 ∈ 𝐴 ↦ 𝐶)‘𝑖) ↔ ∀𝑖 ∈ 𝐴 (𝑀‘𝑖) = ((𝑖 ∈ 𝐴 ↦ 𝐷)‘𝑖))) |
16 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → 𝑖 ∈ 𝐴) | |
17 | fnmptfvd.d | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → 𝐷 ∈ 𝑈) | |
18 | eqid 2728 | . . . . . 6 ⊢ (𝑖 ∈ 𝐴 ↦ 𝐷) = (𝑖 ∈ 𝐴 ↦ 𝐷) | |
19 | 18 | fvmpt2 7010 | . . . . 5 ⊢ ((𝑖 ∈ 𝐴 ∧ 𝐷 ∈ 𝑈) → ((𝑖 ∈ 𝐴 ↦ 𝐷)‘𝑖) = 𝐷) |
20 | 16, 17, 19 | syl2anc 583 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → ((𝑖 ∈ 𝐴 ↦ 𝐷)‘𝑖) = 𝐷) |
21 | 20 | eqeq2d 2739 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → ((𝑀‘𝑖) = ((𝑖 ∈ 𝐴 ↦ 𝐷)‘𝑖) ↔ (𝑀‘𝑖) = 𝐷)) |
22 | 21 | ralbidva 3171 | . 2 ⊢ (𝜑 → (∀𝑖 ∈ 𝐴 (𝑀‘𝑖) = ((𝑖 ∈ 𝐴 ↦ 𝐷)‘𝑖) ↔ ∀𝑖 ∈ 𝐴 (𝑀‘𝑖) = 𝐷)) |
23 | 8, 15, 22 | 3bitrd 305 | 1 ⊢ (𝜑 → (𝑀 = (𝑎 ∈ 𝐴 ↦ 𝐶) ↔ ∀𝑖 ∈ 𝐴 (𝑀‘𝑖) = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3057 ↦ cmpt 5225 Fn wfn 6537 ‘cfv 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-fv 6550 |
This theorem is referenced by: cramerlem1 22582 dssmapnvod 43444 |
Copyright terms: Public domain | W3C validator |