MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnmptfvd Structured version   Visualization version   GIF version

Theorem fnmptfvd 7074
Description: A function with a given domain is a mapping defined by its function values. (Contributed by AV, 1-Mar-2019.)
Hypotheses
Ref Expression
fnmptfvd.m (𝜑𝑀 Fn 𝐴)
fnmptfvd.s (𝑖 = 𝑎𝐷 = 𝐶)
fnmptfvd.d ((𝜑𝑖𝐴) → 𝐷𝑈)
fnmptfvd.c ((𝜑𝑎𝐴) → 𝐶𝑉)
Assertion
Ref Expression
fnmptfvd (𝜑 → (𝑀 = (𝑎𝐴𝐶) ↔ ∀𝑖𝐴 (𝑀𝑖) = 𝐷))
Distinct variable groups:   𝐴,𝑎,𝑖   𝐶,𝑖   𝐷,𝑎   𝑀,𝑎,𝑖   𝑈,𝑎,𝑖   𝑉,𝑎,𝑖   𝜑,𝑎,𝑖
Allowed substitution hints:   𝐶(𝑎)   𝐷(𝑖)

Proof of Theorem fnmptfvd
StepHypRef Expression
1 fnmptfvd.m . . 3 (𝜑𝑀 Fn 𝐴)
2 fnmptfvd.c . . . . 5 ((𝜑𝑎𝐴) → 𝐶𝑉)
32ralrimiva 3152 . . . 4 (𝜑 → ∀𝑎𝐴 𝐶𝑉)
4 eqid 2740 . . . . 5 (𝑎𝐴𝐶) = (𝑎𝐴𝐶)
54fnmpt 6720 . . . 4 (∀𝑎𝐴 𝐶𝑉 → (𝑎𝐴𝐶) Fn 𝐴)
63, 5syl 17 . . 3 (𝜑 → (𝑎𝐴𝐶) Fn 𝐴)
7 eqfnfv 7064 . . 3 ((𝑀 Fn 𝐴 ∧ (𝑎𝐴𝐶) Fn 𝐴) → (𝑀 = (𝑎𝐴𝐶) ↔ ∀𝑖𝐴 (𝑀𝑖) = ((𝑎𝐴𝐶)‘𝑖)))
81, 6, 7syl2anc 583 . 2 (𝜑 → (𝑀 = (𝑎𝐴𝐶) ↔ ∀𝑖𝐴 (𝑀𝑖) = ((𝑎𝐴𝐶)‘𝑖)))
9 fnmptfvd.s . . . . . . . 8 (𝑖 = 𝑎𝐷 = 𝐶)
109cbvmptv 5279 . . . . . . 7 (𝑖𝐴𝐷) = (𝑎𝐴𝐶)
1110eqcomi 2749 . . . . . 6 (𝑎𝐴𝐶) = (𝑖𝐴𝐷)
1211a1i 11 . . . . 5 (𝜑 → (𝑎𝐴𝐶) = (𝑖𝐴𝐷))
1312fveq1d 6922 . . . 4 (𝜑 → ((𝑎𝐴𝐶)‘𝑖) = ((𝑖𝐴𝐷)‘𝑖))
1413eqeq2d 2751 . . 3 (𝜑 → ((𝑀𝑖) = ((𝑎𝐴𝐶)‘𝑖) ↔ (𝑀𝑖) = ((𝑖𝐴𝐷)‘𝑖)))
1514ralbidv 3184 . 2 (𝜑 → (∀𝑖𝐴 (𝑀𝑖) = ((𝑎𝐴𝐶)‘𝑖) ↔ ∀𝑖𝐴 (𝑀𝑖) = ((𝑖𝐴𝐷)‘𝑖)))
16 simpr 484 . . . . 5 ((𝜑𝑖𝐴) → 𝑖𝐴)
17 fnmptfvd.d . . . . 5 ((𝜑𝑖𝐴) → 𝐷𝑈)
18 eqid 2740 . . . . . 6 (𝑖𝐴𝐷) = (𝑖𝐴𝐷)
1918fvmpt2 7040 . . . . 5 ((𝑖𝐴𝐷𝑈) → ((𝑖𝐴𝐷)‘𝑖) = 𝐷)
2016, 17, 19syl2anc 583 . . . 4 ((𝜑𝑖𝐴) → ((𝑖𝐴𝐷)‘𝑖) = 𝐷)
2120eqeq2d 2751 . . 3 ((𝜑𝑖𝐴) → ((𝑀𝑖) = ((𝑖𝐴𝐷)‘𝑖) ↔ (𝑀𝑖) = 𝐷))
2221ralbidva 3182 . 2 (𝜑 → (∀𝑖𝐴 (𝑀𝑖) = ((𝑖𝐴𝐷)‘𝑖) ↔ ∀𝑖𝐴 (𝑀𝑖) = 𝐷))
238, 15, 223bitrd 305 1 (𝜑 → (𝑀 = (𝑎𝐴𝐶) ↔ ∀𝑖𝐴 (𝑀𝑖) = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  cmpt 5249   Fn wfn 6568  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581
This theorem is referenced by:  cramerlem1  22714  dssmapnvod  43982
  Copyright terms: Public domain W3C validator