| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnmptfvd | Structured version Visualization version GIF version | ||
| Description: A function with a given domain is a mapping defined by its function values. (Contributed by AV, 1-Mar-2019.) |
| Ref | Expression |
|---|---|
| fnmptfvd.m | ⊢ (𝜑 → 𝑀 Fn 𝐴) |
| fnmptfvd.s | ⊢ (𝑖 = 𝑎 → 𝐷 = 𝐶) |
| fnmptfvd.d | ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → 𝐷 ∈ 𝑈) |
| fnmptfvd.c | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝐶 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| fnmptfvd | ⊢ (𝜑 → (𝑀 = (𝑎 ∈ 𝐴 ↦ 𝐶) ↔ ∀𝑖 ∈ 𝐴 (𝑀‘𝑖) = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmptfvd.m | . . 3 ⊢ (𝜑 → 𝑀 Fn 𝐴) | |
| 2 | fnmptfvd.c | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝐶 ∈ 𝑉) | |
| 3 | 2 | ralrimiva 3132 | . . . 4 ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 𝐶 ∈ 𝑉) |
| 4 | eqid 2735 | . . . . 5 ⊢ (𝑎 ∈ 𝐴 ↦ 𝐶) = (𝑎 ∈ 𝐴 ↦ 𝐶) | |
| 5 | 4 | fnmpt 6678 | . . . 4 ⊢ (∀𝑎 ∈ 𝐴 𝐶 ∈ 𝑉 → (𝑎 ∈ 𝐴 ↦ 𝐶) Fn 𝐴) |
| 6 | 3, 5 | syl 17 | . . 3 ⊢ (𝜑 → (𝑎 ∈ 𝐴 ↦ 𝐶) Fn 𝐴) |
| 7 | eqfnfv 7021 | . . 3 ⊢ ((𝑀 Fn 𝐴 ∧ (𝑎 ∈ 𝐴 ↦ 𝐶) Fn 𝐴) → (𝑀 = (𝑎 ∈ 𝐴 ↦ 𝐶) ↔ ∀𝑖 ∈ 𝐴 (𝑀‘𝑖) = ((𝑎 ∈ 𝐴 ↦ 𝐶)‘𝑖))) | |
| 8 | 1, 6, 7 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑀 = (𝑎 ∈ 𝐴 ↦ 𝐶) ↔ ∀𝑖 ∈ 𝐴 (𝑀‘𝑖) = ((𝑎 ∈ 𝐴 ↦ 𝐶)‘𝑖))) |
| 9 | fnmptfvd.s | . . . . . . . 8 ⊢ (𝑖 = 𝑎 → 𝐷 = 𝐶) | |
| 10 | 9 | cbvmptv 5225 | . . . . . . 7 ⊢ (𝑖 ∈ 𝐴 ↦ 𝐷) = (𝑎 ∈ 𝐴 ↦ 𝐶) |
| 11 | 10 | eqcomi 2744 | . . . . . 6 ⊢ (𝑎 ∈ 𝐴 ↦ 𝐶) = (𝑖 ∈ 𝐴 ↦ 𝐷) |
| 12 | 11 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑎 ∈ 𝐴 ↦ 𝐶) = (𝑖 ∈ 𝐴 ↦ 𝐷)) |
| 13 | 12 | fveq1d 6878 | . . . 4 ⊢ (𝜑 → ((𝑎 ∈ 𝐴 ↦ 𝐶)‘𝑖) = ((𝑖 ∈ 𝐴 ↦ 𝐷)‘𝑖)) |
| 14 | 13 | eqeq2d 2746 | . . 3 ⊢ (𝜑 → ((𝑀‘𝑖) = ((𝑎 ∈ 𝐴 ↦ 𝐶)‘𝑖) ↔ (𝑀‘𝑖) = ((𝑖 ∈ 𝐴 ↦ 𝐷)‘𝑖))) |
| 15 | 14 | ralbidv 3163 | . 2 ⊢ (𝜑 → (∀𝑖 ∈ 𝐴 (𝑀‘𝑖) = ((𝑎 ∈ 𝐴 ↦ 𝐶)‘𝑖) ↔ ∀𝑖 ∈ 𝐴 (𝑀‘𝑖) = ((𝑖 ∈ 𝐴 ↦ 𝐷)‘𝑖))) |
| 16 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → 𝑖 ∈ 𝐴) | |
| 17 | fnmptfvd.d | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → 𝐷 ∈ 𝑈) | |
| 18 | eqid 2735 | . . . . . 6 ⊢ (𝑖 ∈ 𝐴 ↦ 𝐷) = (𝑖 ∈ 𝐴 ↦ 𝐷) | |
| 19 | 18 | fvmpt2 6997 | . . . . 5 ⊢ ((𝑖 ∈ 𝐴 ∧ 𝐷 ∈ 𝑈) → ((𝑖 ∈ 𝐴 ↦ 𝐷)‘𝑖) = 𝐷) |
| 20 | 16, 17, 19 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → ((𝑖 ∈ 𝐴 ↦ 𝐷)‘𝑖) = 𝐷) |
| 21 | 20 | eqeq2d 2746 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → ((𝑀‘𝑖) = ((𝑖 ∈ 𝐴 ↦ 𝐷)‘𝑖) ↔ (𝑀‘𝑖) = 𝐷)) |
| 22 | 21 | ralbidva 3161 | . 2 ⊢ (𝜑 → (∀𝑖 ∈ 𝐴 (𝑀‘𝑖) = ((𝑖 ∈ 𝐴 ↦ 𝐷)‘𝑖) ↔ ∀𝑖 ∈ 𝐴 (𝑀‘𝑖) = 𝐷)) |
| 23 | 8, 15, 22 | 3bitrd 305 | 1 ⊢ (𝜑 → (𝑀 = (𝑎 ∈ 𝐴 ↦ 𝐶) ↔ ∀𝑖 ∈ 𝐴 (𝑀‘𝑖) = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ↦ cmpt 5201 Fn wfn 6526 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-fv 6539 |
| This theorem is referenced by: cramerlem1 22625 dssmapnvod 44044 |
| Copyright terms: Public domain | W3C validator |