![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnmptfvd | Structured version Visualization version GIF version |
Description: A function with a given domain is a mapping defined by its function values. (Contributed by AV, 1-Mar-2019.) |
Ref | Expression |
---|---|
fnmptfvd.m | ⊢ (𝜑 → 𝑀 Fn 𝐴) |
fnmptfvd.s | ⊢ (𝑖 = 𝑎 → 𝐷 = 𝐶) |
fnmptfvd.d | ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → 𝐷 ∈ 𝑈) |
fnmptfvd.c | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝐶 ∈ 𝑉) |
Ref | Expression |
---|---|
fnmptfvd | ⊢ (𝜑 → (𝑀 = (𝑎 ∈ 𝐴 ↦ 𝐶) ↔ ∀𝑖 ∈ 𝐴 (𝑀‘𝑖) = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnmptfvd.m | . . 3 ⊢ (𝜑 → 𝑀 Fn 𝐴) | |
2 | fnmptfvd.c | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝐶 ∈ 𝑉) | |
3 | 2 | ralrimiva 3147 | . . . 4 ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 𝐶 ∈ 𝑉) |
4 | eqid 2799 | . . . . 5 ⊢ (𝑎 ∈ 𝐴 ↦ 𝐶) = (𝑎 ∈ 𝐴 ↦ 𝐶) | |
5 | 4 | fnmpt 6231 | . . . 4 ⊢ (∀𝑎 ∈ 𝐴 𝐶 ∈ 𝑉 → (𝑎 ∈ 𝐴 ↦ 𝐶) Fn 𝐴) |
6 | 3, 5 | syl 17 | . . 3 ⊢ (𝜑 → (𝑎 ∈ 𝐴 ↦ 𝐶) Fn 𝐴) |
7 | eqfnfv 6537 | . . 3 ⊢ ((𝑀 Fn 𝐴 ∧ (𝑎 ∈ 𝐴 ↦ 𝐶) Fn 𝐴) → (𝑀 = (𝑎 ∈ 𝐴 ↦ 𝐶) ↔ ∀𝑖 ∈ 𝐴 (𝑀‘𝑖) = ((𝑎 ∈ 𝐴 ↦ 𝐶)‘𝑖))) | |
8 | 1, 6, 7 | syl2anc 580 | . 2 ⊢ (𝜑 → (𝑀 = (𝑎 ∈ 𝐴 ↦ 𝐶) ↔ ∀𝑖 ∈ 𝐴 (𝑀‘𝑖) = ((𝑎 ∈ 𝐴 ↦ 𝐶)‘𝑖))) |
9 | fnmptfvd.s | . . . . . . . 8 ⊢ (𝑖 = 𝑎 → 𝐷 = 𝐶) | |
10 | 9 | cbvmptv 4943 | . . . . . . 7 ⊢ (𝑖 ∈ 𝐴 ↦ 𝐷) = (𝑎 ∈ 𝐴 ↦ 𝐶) |
11 | 10 | eqcomi 2808 | . . . . . 6 ⊢ (𝑎 ∈ 𝐴 ↦ 𝐶) = (𝑖 ∈ 𝐴 ↦ 𝐷) |
12 | 11 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑎 ∈ 𝐴 ↦ 𝐶) = (𝑖 ∈ 𝐴 ↦ 𝐷)) |
13 | 12 | fveq1d 6413 | . . . 4 ⊢ (𝜑 → ((𝑎 ∈ 𝐴 ↦ 𝐶)‘𝑖) = ((𝑖 ∈ 𝐴 ↦ 𝐷)‘𝑖)) |
14 | 13 | eqeq2d 2809 | . . 3 ⊢ (𝜑 → ((𝑀‘𝑖) = ((𝑎 ∈ 𝐴 ↦ 𝐶)‘𝑖) ↔ (𝑀‘𝑖) = ((𝑖 ∈ 𝐴 ↦ 𝐷)‘𝑖))) |
15 | 14 | ralbidv 3167 | . 2 ⊢ (𝜑 → (∀𝑖 ∈ 𝐴 (𝑀‘𝑖) = ((𝑎 ∈ 𝐴 ↦ 𝐶)‘𝑖) ↔ ∀𝑖 ∈ 𝐴 (𝑀‘𝑖) = ((𝑖 ∈ 𝐴 ↦ 𝐷)‘𝑖))) |
16 | simpr 478 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → 𝑖 ∈ 𝐴) | |
17 | fnmptfvd.d | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → 𝐷 ∈ 𝑈) | |
18 | eqid 2799 | . . . . . 6 ⊢ (𝑖 ∈ 𝐴 ↦ 𝐷) = (𝑖 ∈ 𝐴 ↦ 𝐷) | |
19 | 18 | fvmpt2 6516 | . . . . 5 ⊢ ((𝑖 ∈ 𝐴 ∧ 𝐷 ∈ 𝑈) → ((𝑖 ∈ 𝐴 ↦ 𝐷)‘𝑖) = 𝐷) |
20 | 16, 17, 19 | syl2anc 580 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → ((𝑖 ∈ 𝐴 ↦ 𝐷)‘𝑖) = 𝐷) |
21 | 20 | eqeq2d 2809 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → ((𝑀‘𝑖) = ((𝑖 ∈ 𝐴 ↦ 𝐷)‘𝑖) ↔ (𝑀‘𝑖) = 𝐷)) |
22 | 21 | ralbidva 3166 | . 2 ⊢ (𝜑 → (∀𝑖 ∈ 𝐴 (𝑀‘𝑖) = ((𝑖 ∈ 𝐴 ↦ 𝐷)‘𝑖) ↔ ∀𝑖 ∈ 𝐴 (𝑀‘𝑖) = 𝐷)) |
23 | 8, 15, 22 | 3bitrd 297 | 1 ⊢ (𝜑 → (𝑀 = (𝑎 ∈ 𝐴 ↦ 𝐶) ↔ ∀𝑖 ∈ 𝐴 (𝑀‘𝑖) = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∀wral 3089 ↦ cmpt 4922 Fn wfn 6096 ‘cfv 6101 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-fv 6109 |
This theorem is referenced by: cramerlem1 20821 dssmapnvod 39096 |
Copyright terms: Public domain | W3C validator |