MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnmptfvd Structured version   Visualization version   GIF version

Theorem fnmptfvd 6995
Description: A function with a given domain is a mapping defined by its function values. (Contributed by AV, 1-Mar-2019.)
Hypotheses
Ref Expression
fnmptfvd.m (𝜑𝑀 Fn 𝐴)
fnmptfvd.s (𝑖 = 𝑎𝐷 = 𝐶)
fnmptfvd.d ((𝜑𝑖𝐴) → 𝐷𝑈)
fnmptfvd.c ((𝜑𝑎𝐴) → 𝐶𝑉)
Assertion
Ref Expression
fnmptfvd (𝜑 → (𝑀 = (𝑎𝐴𝐶) ↔ ∀𝑖𝐴 (𝑀𝑖) = 𝐷))
Distinct variable groups:   𝐴,𝑎,𝑖   𝐶,𝑖   𝐷,𝑎   𝑀,𝑎,𝑖   𝑈,𝑎,𝑖   𝑉,𝑎,𝑖   𝜑,𝑎,𝑖
Allowed substitution hints:   𝐶(𝑎)   𝐷(𝑖)

Proof of Theorem fnmptfvd
StepHypRef Expression
1 fnmptfvd.m . . 3 (𝜑𝑀 Fn 𝐴)
2 fnmptfvd.c . . . . 5 ((𝜑𝑎𝐴) → 𝐶𝑉)
32ralrimiva 3125 . . . 4 (𝜑 → ∀𝑎𝐴 𝐶𝑉)
4 eqid 2729 . . . . 5 (𝑎𝐴𝐶) = (𝑎𝐴𝐶)
54fnmpt 6640 . . . 4 (∀𝑎𝐴 𝐶𝑉 → (𝑎𝐴𝐶) Fn 𝐴)
63, 5syl 17 . . 3 (𝜑 → (𝑎𝐴𝐶) Fn 𝐴)
7 eqfnfv 6985 . . 3 ((𝑀 Fn 𝐴 ∧ (𝑎𝐴𝐶) Fn 𝐴) → (𝑀 = (𝑎𝐴𝐶) ↔ ∀𝑖𝐴 (𝑀𝑖) = ((𝑎𝐴𝐶)‘𝑖)))
81, 6, 7syl2anc 584 . 2 (𝜑 → (𝑀 = (𝑎𝐴𝐶) ↔ ∀𝑖𝐴 (𝑀𝑖) = ((𝑎𝐴𝐶)‘𝑖)))
9 fnmptfvd.s . . . . . . . 8 (𝑖 = 𝑎𝐷 = 𝐶)
109cbvmptv 5206 . . . . . . 7 (𝑖𝐴𝐷) = (𝑎𝐴𝐶)
1110eqcomi 2738 . . . . . 6 (𝑎𝐴𝐶) = (𝑖𝐴𝐷)
1211a1i 11 . . . . 5 (𝜑 → (𝑎𝐴𝐶) = (𝑖𝐴𝐷))
1312fveq1d 6842 . . . 4 (𝜑 → ((𝑎𝐴𝐶)‘𝑖) = ((𝑖𝐴𝐷)‘𝑖))
1413eqeq2d 2740 . . 3 (𝜑 → ((𝑀𝑖) = ((𝑎𝐴𝐶)‘𝑖) ↔ (𝑀𝑖) = ((𝑖𝐴𝐷)‘𝑖)))
1514ralbidv 3156 . 2 (𝜑 → (∀𝑖𝐴 (𝑀𝑖) = ((𝑎𝐴𝐶)‘𝑖) ↔ ∀𝑖𝐴 (𝑀𝑖) = ((𝑖𝐴𝐷)‘𝑖)))
16 simpr 484 . . . . 5 ((𝜑𝑖𝐴) → 𝑖𝐴)
17 fnmptfvd.d . . . . 5 ((𝜑𝑖𝐴) → 𝐷𝑈)
18 eqid 2729 . . . . . 6 (𝑖𝐴𝐷) = (𝑖𝐴𝐷)
1918fvmpt2 6961 . . . . 5 ((𝑖𝐴𝐷𝑈) → ((𝑖𝐴𝐷)‘𝑖) = 𝐷)
2016, 17, 19syl2anc 584 . . . 4 ((𝜑𝑖𝐴) → ((𝑖𝐴𝐷)‘𝑖) = 𝐷)
2120eqeq2d 2740 . . 3 ((𝜑𝑖𝐴) → ((𝑀𝑖) = ((𝑖𝐴𝐷)‘𝑖) ↔ (𝑀𝑖) = 𝐷))
2221ralbidva 3154 . 2 (𝜑 → (∀𝑖𝐴 (𝑀𝑖) = ((𝑖𝐴𝐷)‘𝑖) ↔ ∀𝑖𝐴 (𝑀𝑖) = 𝐷))
238, 15, 223bitrd 305 1 (𝜑 → (𝑀 = (𝑎𝐴𝐶) ↔ ∀𝑖𝐴 (𝑀𝑖) = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  cmpt 5183   Fn wfn 6494  cfv 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-fv 6507
This theorem is referenced by:  cramerlem1  22550  dssmapnvod  43982
  Copyright terms: Public domain W3C validator