![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnmptfvd | Structured version Visualization version GIF version |
Description: A function with a given domain is a mapping defined by its function values. (Contributed by AV, 1-Mar-2019.) |
Ref | Expression |
---|---|
fnmptfvd.m | ⊢ (𝜑 → 𝑀 Fn 𝐴) |
fnmptfvd.s | ⊢ (𝑖 = 𝑎 → 𝐷 = 𝐶) |
fnmptfvd.d | ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → 𝐷 ∈ 𝑈) |
fnmptfvd.c | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝐶 ∈ 𝑉) |
Ref | Expression |
---|---|
fnmptfvd | ⊢ (𝜑 → (𝑀 = (𝑎 ∈ 𝐴 ↦ 𝐶) ↔ ∀𝑖 ∈ 𝐴 (𝑀‘𝑖) = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnmptfvd.m | . . 3 ⊢ (𝜑 → 𝑀 Fn 𝐴) | |
2 | fnmptfvd.c | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝐶 ∈ 𝑉) | |
3 | 2 | ralrimiva 3144 | . . . 4 ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 𝐶 ∈ 𝑉) |
4 | eqid 2735 | . . . . 5 ⊢ (𝑎 ∈ 𝐴 ↦ 𝐶) = (𝑎 ∈ 𝐴 ↦ 𝐶) | |
5 | 4 | fnmpt 6709 | . . . 4 ⊢ (∀𝑎 ∈ 𝐴 𝐶 ∈ 𝑉 → (𝑎 ∈ 𝐴 ↦ 𝐶) Fn 𝐴) |
6 | 3, 5 | syl 17 | . . 3 ⊢ (𝜑 → (𝑎 ∈ 𝐴 ↦ 𝐶) Fn 𝐴) |
7 | eqfnfv 7051 | . . 3 ⊢ ((𝑀 Fn 𝐴 ∧ (𝑎 ∈ 𝐴 ↦ 𝐶) Fn 𝐴) → (𝑀 = (𝑎 ∈ 𝐴 ↦ 𝐶) ↔ ∀𝑖 ∈ 𝐴 (𝑀‘𝑖) = ((𝑎 ∈ 𝐴 ↦ 𝐶)‘𝑖))) | |
8 | 1, 6, 7 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑀 = (𝑎 ∈ 𝐴 ↦ 𝐶) ↔ ∀𝑖 ∈ 𝐴 (𝑀‘𝑖) = ((𝑎 ∈ 𝐴 ↦ 𝐶)‘𝑖))) |
9 | fnmptfvd.s | . . . . . . . 8 ⊢ (𝑖 = 𝑎 → 𝐷 = 𝐶) | |
10 | 9 | cbvmptv 5261 | . . . . . . 7 ⊢ (𝑖 ∈ 𝐴 ↦ 𝐷) = (𝑎 ∈ 𝐴 ↦ 𝐶) |
11 | 10 | eqcomi 2744 | . . . . . 6 ⊢ (𝑎 ∈ 𝐴 ↦ 𝐶) = (𝑖 ∈ 𝐴 ↦ 𝐷) |
12 | 11 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑎 ∈ 𝐴 ↦ 𝐶) = (𝑖 ∈ 𝐴 ↦ 𝐷)) |
13 | 12 | fveq1d 6909 | . . . 4 ⊢ (𝜑 → ((𝑎 ∈ 𝐴 ↦ 𝐶)‘𝑖) = ((𝑖 ∈ 𝐴 ↦ 𝐷)‘𝑖)) |
14 | 13 | eqeq2d 2746 | . . 3 ⊢ (𝜑 → ((𝑀‘𝑖) = ((𝑎 ∈ 𝐴 ↦ 𝐶)‘𝑖) ↔ (𝑀‘𝑖) = ((𝑖 ∈ 𝐴 ↦ 𝐷)‘𝑖))) |
15 | 14 | ralbidv 3176 | . 2 ⊢ (𝜑 → (∀𝑖 ∈ 𝐴 (𝑀‘𝑖) = ((𝑎 ∈ 𝐴 ↦ 𝐶)‘𝑖) ↔ ∀𝑖 ∈ 𝐴 (𝑀‘𝑖) = ((𝑖 ∈ 𝐴 ↦ 𝐷)‘𝑖))) |
16 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → 𝑖 ∈ 𝐴) | |
17 | fnmptfvd.d | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → 𝐷 ∈ 𝑈) | |
18 | eqid 2735 | . . . . . 6 ⊢ (𝑖 ∈ 𝐴 ↦ 𝐷) = (𝑖 ∈ 𝐴 ↦ 𝐷) | |
19 | 18 | fvmpt2 7027 | . . . . 5 ⊢ ((𝑖 ∈ 𝐴 ∧ 𝐷 ∈ 𝑈) → ((𝑖 ∈ 𝐴 ↦ 𝐷)‘𝑖) = 𝐷) |
20 | 16, 17, 19 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → ((𝑖 ∈ 𝐴 ↦ 𝐷)‘𝑖) = 𝐷) |
21 | 20 | eqeq2d 2746 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → ((𝑀‘𝑖) = ((𝑖 ∈ 𝐴 ↦ 𝐷)‘𝑖) ↔ (𝑀‘𝑖) = 𝐷)) |
22 | 21 | ralbidva 3174 | . 2 ⊢ (𝜑 → (∀𝑖 ∈ 𝐴 (𝑀‘𝑖) = ((𝑖 ∈ 𝐴 ↦ 𝐷)‘𝑖) ↔ ∀𝑖 ∈ 𝐴 (𝑀‘𝑖) = 𝐷)) |
23 | 8, 15, 22 | 3bitrd 305 | 1 ⊢ (𝜑 → (𝑀 = (𝑎 ∈ 𝐴 ↦ 𝐶) ↔ ∀𝑖 ∈ 𝐴 (𝑀‘𝑖) = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ↦ cmpt 5231 Fn wfn 6558 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-fv 6571 |
This theorem is referenced by: cramerlem1 22709 dssmapnvod 44010 |
Copyright terms: Public domain | W3C validator |