MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfvalf Structured version   Visualization version   GIF version

Theorem cantnfvalf 9561
Description: Lemma for cantnf 9589. The function appearing in cantnfval 9564 is unconditionally a function. (Contributed by Mario Carneiro, 20-May-2015.)
Hypothesis
Ref Expression
cantnfvalf.f 𝐹 = seqω((𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +o 𝐷)), ∅)
Assertion
Ref Expression
cantnfvalf 𝐹:ω⟶On
Distinct variable groups:   𝑧,𝑘,𝐴   𝐵,𝑘,𝑧
Allowed substitution hints:   𝐶(𝑧,𝑘)   𝐷(𝑧,𝑘)   𝐹(𝑧,𝑘)

Proof of Theorem cantnfvalf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfvalf.f . . 3 𝐹 = seqω((𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +o 𝐷)), ∅)
21fnseqom 8377 . 2 𝐹 Fn ω
3 nn0suc 7827 . . . 4 (𝑥 ∈ ω → (𝑥 = ∅ ∨ ∃𝑦 ∈ ω 𝑥 = suc 𝑦))
4 fveq2 6822 . . . . . . 7 (𝑥 = ∅ → (𝐹𝑥) = (𝐹‘∅))
5 0ex 5246 . . . . . . . 8 ∅ ∈ V
61seqom0g 8378 . . . . . . . 8 (∅ ∈ V → (𝐹‘∅) = ∅)
75, 6ax-mp 5 . . . . . . 7 (𝐹‘∅) = ∅
84, 7eqtrdi 2780 . . . . . 6 (𝑥 = ∅ → (𝐹𝑥) = ∅)
9 0elon 6362 . . . . . 6 ∅ ∈ On
108, 9eqeltrdi 2836 . . . . 5 (𝑥 = ∅ → (𝐹𝑥) ∈ On)
111seqomsuc 8379 . . . . . . . . 9 (𝑦 ∈ ω → (𝐹‘suc 𝑦) = (𝑦(𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +o 𝐷))(𝐹𝑦)))
12 df-ov 7352 . . . . . . . . 9 (𝑦(𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +o 𝐷))(𝐹𝑦)) = ((𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +o 𝐷))‘⟨𝑦, (𝐹𝑦)⟩)
1311, 12eqtrdi 2780 . . . . . . . 8 (𝑦 ∈ ω → (𝐹‘suc 𝑦) = ((𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +o 𝐷))‘⟨𝑦, (𝐹𝑦)⟩))
14 df-ov 7352 . . . . . . . . . . . 12 (𝐶 +o 𝐷) = ( +o ‘⟨𝐶, 𝐷⟩)
15 fnoa 8426 . . . . . . . . . . . . . 14 +o Fn (On × On)
16 oacl 8453 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 +o 𝑦) ∈ On)
1716rgen2 3169 . . . . . . . . . . . . . 14 𝑥 ∈ On ∀𝑦 ∈ On (𝑥 +o 𝑦) ∈ On
18 ffnov 7475 . . . . . . . . . . . . . 14 ( +o :(On × On)⟶On ↔ ( +o Fn (On × On) ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 +o 𝑦) ∈ On))
1915, 17, 18mpbir2an 711 . . . . . . . . . . . . 13 +o :(On × On)⟶On
2019, 9f0cli 7032 . . . . . . . . . . . 12 ( +o ‘⟨𝐶, 𝐷⟩) ∈ On
2114, 20eqeltri 2824 . . . . . . . . . . 11 (𝐶 +o 𝐷) ∈ On
2221rgen2w 3049 . . . . . . . . . 10 𝑘𝐴𝑧𝐵 (𝐶 +o 𝐷) ∈ On
23 eqid 2729 . . . . . . . . . . 11 (𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +o 𝐷)) = (𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +o 𝐷))
2423fmpo 8003 . . . . . . . . . 10 (∀𝑘𝐴𝑧𝐵 (𝐶 +o 𝐷) ∈ On ↔ (𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +o 𝐷)):(𝐴 × 𝐵)⟶On)
2522, 24mpbi 230 . . . . . . . . 9 (𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +o 𝐷)):(𝐴 × 𝐵)⟶On
2625, 9f0cli 7032 . . . . . . . 8 ((𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +o 𝐷))‘⟨𝑦, (𝐹𝑦)⟩) ∈ On
2713, 26eqeltrdi 2836 . . . . . . 7 (𝑦 ∈ ω → (𝐹‘suc 𝑦) ∈ On)
28 fveq2 6822 . . . . . . . 8 (𝑥 = suc 𝑦 → (𝐹𝑥) = (𝐹‘suc 𝑦))
2928eleq1d 2813 . . . . . . 7 (𝑥 = suc 𝑦 → ((𝐹𝑥) ∈ On ↔ (𝐹‘suc 𝑦) ∈ On))
3027, 29syl5ibrcom 247 . . . . . 6 (𝑦 ∈ ω → (𝑥 = suc 𝑦 → (𝐹𝑥) ∈ On))
3130rexlimiv 3123 . . . . 5 (∃𝑦 ∈ ω 𝑥 = suc 𝑦 → (𝐹𝑥) ∈ On)
3210, 31jaoi 857 . . . 4 ((𝑥 = ∅ ∨ ∃𝑦 ∈ ω 𝑥 = suc 𝑦) → (𝐹𝑥) ∈ On)
333, 32syl 17 . . 3 (𝑥 ∈ ω → (𝐹𝑥) ∈ On)
3433rgen 3046 . 2 𝑥 ∈ ω (𝐹𝑥) ∈ On
35 ffnfv 7053 . 2 (𝐹:ω⟶On ↔ (𝐹 Fn ω ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ On))
362, 34, 35mpbir2an 711 1 𝐹:ω⟶On
Colors of variables: wff setvar class
Syntax hints:  wo 847   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3436  c0 4284  cop 4583   × cxp 5617  Oncon0 6307  suc csuc 6309   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  cmpo 7351  ωcom 7799  seqωcseqom 8369   +o coa 8385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-seqom 8370  df-oadd 8392
This theorem is referenced by:  cantnfval2  9565  cantnfle  9567  cantnflt  9568  cantnflem1d  9584  cantnflem1  9585  cnfcomlem  9595
  Copyright terms: Public domain W3C validator