MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfvalf Structured version   Visualization version   GIF version

Theorem cantnfvalf 9734
Description: Lemma for cantnf 9762. The function appearing in cantnfval 9737 is unconditionally a function. (Contributed by Mario Carneiro, 20-May-2015.)
Hypothesis
Ref Expression
cantnfvalf.f 𝐹 = seqω((𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +o 𝐷)), ∅)
Assertion
Ref Expression
cantnfvalf 𝐹:ω⟶On
Distinct variable groups:   𝑧,𝑘,𝐴   𝐵,𝑘,𝑧
Allowed substitution hints:   𝐶(𝑧,𝑘)   𝐷(𝑧,𝑘)   𝐹(𝑧,𝑘)

Proof of Theorem cantnfvalf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfvalf.f . . 3 𝐹 = seqω((𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +o 𝐷)), ∅)
21fnseqom 8511 . 2 𝐹 Fn ω
3 nn0suc 7934 . . . 4 (𝑥 ∈ ω → (𝑥 = ∅ ∨ ∃𝑦 ∈ ω 𝑥 = suc 𝑦))
4 fveq2 6920 . . . . . . 7 (𝑥 = ∅ → (𝐹𝑥) = (𝐹‘∅))
5 0ex 5325 . . . . . . . 8 ∅ ∈ V
61seqom0g 8512 . . . . . . . 8 (∅ ∈ V → (𝐹‘∅) = ∅)
75, 6ax-mp 5 . . . . . . 7 (𝐹‘∅) = ∅
84, 7eqtrdi 2796 . . . . . 6 (𝑥 = ∅ → (𝐹𝑥) = ∅)
9 0elon 6449 . . . . . 6 ∅ ∈ On
108, 9eqeltrdi 2852 . . . . 5 (𝑥 = ∅ → (𝐹𝑥) ∈ On)
111seqomsuc 8513 . . . . . . . . 9 (𝑦 ∈ ω → (𝐹‘suc 𝑦) = (𝑦(𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +o 𝐷))(𝐹𝑦)))
12 df-ov 7451 . . . . . . . . 9 (𝑦(𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +o 𝐷))(𝐹𝑦)) = ((𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +o 𝐷))‘⟨𝑦, (𝐹𝑦)⟩)
1311, 12eqtrdi 2796 . . . . . . . 8 (𝑦 ∈ ω → (𝐹‘suc 𝑦) = ((𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +o 𝐷))‘⟨𝑦, (𝐹𝑦)⟩))
14 df-ov 7451 . . . . . . . . . . . 12 (𝐶 +o 𝐷) = ( +o ‘⟨𝐶, 𝐷⟩)
15 fnoa 8564 . . . . . . . . . . . . . 14 +o Fn (On × On)
16 oacl 8591 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 +o 𝑦) ∈ On)
1716rgen2 3205 . . . . . . . . . . . . . 14 𝑥 ∈ On ∀𝑦 ∈ On (𝑥 +o 𝑦) ∈ On
18 ffnov 7576 . . . . . . . . . . . . . 14 ( +o :(On × On)⟶On ↔ ( +o Fn (On × On) ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 +o 𝑦) ∈ On))
1915, 17, 18mpbir2an 710 . . . . . . . . . . . . 13 +o :(On × On)⟶On
2019, 9f0cli 7132 . . . . . . . . . . . 12 ( +o ‘⟨𝐶, 𝐷⟩) ∈ On
2114, 20eqeltri 2840 . . . . . . . . . . 11 (𝐶 +o 𝐷) ∈ On
2221rgen2w 3072 . . . . . . . . . 10 𝑘𝐴𝑧𝐵 (𝐶 +o 𝐷) ∈ On
23 eqid 2740 . . . . . . . . . . 11 (𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +o 𝐷)) = (𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +o 𝐷))
2423fmpo 8109 . . . . . . . . . 10 (∀𝑘𝐴𝑧𝐵 (𝐶 +o 𝐷) ∈ On ↔ (𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +o 𝐷)):(𝐴 × 𝐵)⟶On)
2522, 24mpbi 230 . . . . . . . . 9 (𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +o 𝐷)):(𝐴 × 𝐵)⟶On
2625, 9f0cli 7132 . . . . . . . 8 ((𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +o 𝐷))‘⟨𝑦, (𝐹𝑦)⟩) ∈ On
2713, 26eqeltrdi 2852 . . . . . . 7 (𝑦 ∈ ω → (𝐹‘suc 𝑦) ∈ On)
28 fveq2 6920 . . . . . . . 8 (𝑥 = suc 𝑦 → (𝐹𝑥) = (𝐹‘suc 𝑦))
2928eleq1d 2829 . . . . . . 7 (𝑥 = suc 𝑦 → ((𝐹𝑥) ∈ On ↔ (𝐹‘suc 𝑦) ∈ On))
3027, 29syl5ibrcom 247 . . . . . 6 (𝑦 ∈ ω → (𝑥 = suc 𝑦 → (𝐹𝑥) ∈ On))
3130rexlimiv 3154 . . . . 5 (∃𝑦 ∈ ω 𝑥 = suc 𝑦 → (𝐹𝑥) ∈ On)
3210, 31jaoi 856 . . . 4 ((𝑥 = ∅ ∨ ∃𝑦 ∈ ω 𝑥 = suc 𝑦) → (𝐹𝑥) ∈ On)
333, 32syl 17 . . 3 (𝑥 ∈ ω → (𝐹𝑥) ∈ On)
3433rgen 3069 . 2 𝑥 ∈ ω (𝐹𝑥) ∈ On
35 ffnfv 7153 . 2 (𝐹:ω⟶On ↔ (𝐹 Fn ω ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ On))
362, 34, 35mpbir2an 710 1 𝐹:ω⟶On
Colors of variables: wff setvar class
Syntax hints:  wo 846   = wceq 1537  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  c0 4352  cop 4654   × cxp 5698  Oncon0 6395  suc csuc 6397   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  ωcom 7903  seqωcseqom 8503   +o coa 8519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-seqom 8504  df-oadd 8526
This theorem is referenced by:  cantnfval2  9738  cantnfle  9740  cantnflt  9741  cantnflem1d  9757  cantnflem1  9758  cnfcomlem  9768
  Copyright terms: Public domain W3C validator