Step | Hyp | Ref
| Expression |
1 | | cantnfvalf.f |
. . 3
⊢ 𝐹 = seqω((𝑘 ∈ 𝐴, 𝑧 ∈ 𝐵 ↦ (𝐶 +o 𝐷)), ∅) |
2 | 1 | fnseqom 8191 |
. 2
⊢ 𝐹 Fn ω |
3 | | nn0suc 7673 |
. . . 4
⊢ (𝑥 ∈ ω → (𝑥 = ∅ ∨ ∃𝑦 ∈ ω 𝑥 = suc 𝑦)) |
4 | | fveq2 6717 |
. . . . . . 7
⊢ (𝑥 = ∅ → (𝐹‘𝑥) = (𝐹‘∅)) |
5 | | 0ex 5200 |
. . . . . . . 8
⊢ ∅
∈ V |
6 | 1 | seqom0g 8192 |
. . . . . . . 8
⊢ (∅
∈ V → (𝐹‘∅) = ∅) |
7 | 5, 6 | ax-mp 5 |
. . . . . . 7
⊢ (𝐹‘∅) =
∅ |
8 | 4, 7 | eqtrdi 2794 |
. . . . . 6
⊢ (𝑥 = ∅ → (𝐹‘𝑥) = ∅) |
9 | | 0elon 6266 |
. . . . . 6
⊢ ∅
∈ On |
10 | 8, 9 | eqeltrdi 2846 |
. . . . 5
⊢ (𝑥 = ∅ → (𝐹‘𝑥) ∈ On) |
11 | 1 | seqomsuc 8193 |
. . . . . . . . 9
⊢ (𝑦 ∈ ω → (𝐹‘suc 𝑦) = (𝑦(𝑘 ∈ 𝐴, 𝑧 ∈ 𝐵 ↦ (𝐶 +o 𝐷))(𝐹‘𝑦))) |
12 | | df-ov 7216 |
. . . . . . . . 9
⊢ (𝑦(𝑘 ∈ 𝐴, 𝑧 ∈ 𝐵 ↦ (𝐶 +o 𝐷))(𝐹‘𝑦)) = ((𝑘 ∈ 𝐴, 𝑧 ∈ 𝐵 ↦ (𝐶 +o 𝐷))‘〈𝑦, (𝐹‘𝑦)〉) |
13 | 11, 12 | eqtrdi 2794 |
. . . . . . . 8
⊢ (𝑦 ∈ ω → (𝐹‘suc 𝑦) = ((𝑘 ∈ 𝐴, 𝑧 ∈ 𝐵 ↦ (𝐶 +o 𝐷))‘〈𝑦, (𝐹‘𝑦)〉)) |
14 | | df-ov 7216 |
. . . . . . . . . . . 12
⊢ (𝐶 +o 𝐷) = ( +o ‘〈𝐶, 𝐷〉) |
15 | | fnoa 8235 |
. . . . . . . . . . . . . 14
⊢
+o Fn (On × On) |
16 | | oacl 8262 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 +o 𝑦) ∈ On) |
17 | 16 | rgen2 3124 |
. . . . . . . . . . . . . 14
⊢
∀𝑥 ∈ On
∀𝑦 ∈ On (𝑥 +o 𝑦) ∈ On |
18 | | ffnov 7337 |
. . . . . . . . . . . . . 14
⊢ (
+o :(On × On)⟶On ↔ ( +o Fn (On ×
On) ∧ ∀𝑥 ∈
On ∀𝑦 ∈ On
(𝑥 +o 𝑦) ∈ On)) |
19 | 15, 17, 18 | mpbir2an 711 |
. . . . . . . . . . . . 13
⊢
+o :(On × On)⟶On |
20 | 19, 9 | f0cli 6917 |
. . . . . . . . . . . 12
⊢ (
+o ‘〈𝐶, 𝐷〉) ∈ On |
21 | 14, 20 | eqeltri 2834 |
. . . . . . . . . . 11
⊢ (𝐶 +o 𝐷) ∈ On |
22 | 21 | rgen2w 3074 |
. . . . . . . . . 10
⊢
∀𝑘 ∈
𝐴 ∀𝑧 ∈ 𝐵 (𝐶 +o 𝐷) ∈ On |
23 | | eqid 2737 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ 𝐴, 𝑧 ∈ 𝐵 ↦ (𝐶 +o 𝐷)) = (𝑘 ∈ 𝐴, 𝑧 ∈ 𝐵 ↦ (𝐶 +o 𝐷)) |
24 | 23 | fmpo 7838 |
. . . . . . . . . 10
⊢
(∀𝑘 ∈
𝐴 ∀𝑧 ∈ 𝐵 (𝐶 +o 𝐷) ∈ On ↔ (𝑘 ∈ 𝐴, 𝑧 ∈ 𝐵 ↦ (𝐶 +o 𝐷)):(𝐴 × 𝐵)⟶On) |
25 | 22, 24 | mpbi 233 |
. . . . . . . . 9
⊢ (𝑘 ∈ 𝐴, 𝑧 ∈ 𝐵 ↦ (𝐶 +o 𝐷)):(𝐴 × 𝐵)⟶On |
26 | 25, 9 | f0cli 6917 |
. . . . . . . 8
⊢ ((𝑘 ∈ 𝐴, 𝑧 ∈ 𝐵 ↦ (𝐶 +o 𝐷))‘〈𝑦, (𝐹‘𝑦)〉) ∈ On |
27 | 13, 26 | eqeltrdi 2846 |
. . . . . . 7
⊢ (𝑦 ∈ ω → (𝐹‘suc 𝑦) ∈ On) |
28 | | fveq2 6717 |
. . . . . . . 8
⊢ (𝑥 = suc 𝑦 → (𝐹‘𝑥) = (𝐹‘suc 𝑦)) |
29 | 28 | eleq1d 2822 |
. . . . . . 7
⊢ (𝑥 = suc 𝑦 → ((𝐹‘𝑥) ∈ On ↔ (𝐹‘suc 𝑦) ∈ On)) |
30 | 27, 29 | syl5ibrcom 250 |
. . . . . 6
⊢ (𝑦 ∈ ω → (𝑥 = suc 𝑦 → (𝐹‘𝑥) ∈ On)) |
31 | 30 | rexlimiv 3199 |
. . . . 5
⊢
(∃𝑦 ∈
ω 𝑥 = suc 𝑦 → (𝐹‘𝑥) ∈ On) |
32 | 10, 31 | jaoi 857 |
. . . 4
⊢ ((𝑥 = ∅ ∨ ∃𝑦 ∈ ω 𝑥 = suc 𝑦) → (𝐹‘𝑥) ∈ On) |
33 | 3, 32 | syl 17 |
. . 3
⊢ (𝑥 ∈ ω → (𝐹‘𝑥) ∈ On) |
34 | 33 | rgen 3071 |
. 2
⊢
∀𝑥 ∈
ω (𝐹‘𝑥) ∈ On |
35 | | ffnfv 6935 |
. 2
⊢ (𝐹:ω⟶On ↔ (𝐹 Fn ω ∧ ∀𝑥 ∈ ω (𝐹‘𝑥) ∈ On)) |
36 | 2, 34, 35 | mpbir2an 711 |
1
⊢ 𝐹:ω⟶On |