| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > om0x | Structured version Visualization version GIF version | ||
| Description: Ordinal multiplication with zero. Definition 8.15 of [TakeutiZaring] p. 62. Unlike om0 8442, this version works whether or not 𝐴 is an ordinal. However, since it is an artifact of our particular function value definition outside the domain, we will not use it in order to be conventional and present it only as a curiosity. (Contributed by NM, 1-Feb-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| om0x | ⊢ (𝐴 ·o ∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om0 8442 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 ·o ∅) = ∅) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ On) → (𝐴 ·o ∅) = ∅) |
| 3 | fnom 8434 | . . . 4 ⊢ ·o Fn (On × On) | |
| 4 | 3 | fndmi 6590 | . . 3 ⊢ dom ·o = (On × On) |
| 5 | 4 | ndmov 7537 | . 2 ⊢ (¬ (𝐴 ∈ On ∧ ∅ ∈ On) → (𝐴 ·o ∅) = ∅) |
| 6 | 2, 5 | pm2.61i 182 | 1 ⊢ (𝐴 ·o ∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∅c0 4286 × cxp 5621 Oncon0 6311 (class class class)co 7353 ·o comu 8393 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-omul 8400 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |