MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om0x Structured version   Visualization version   GIF version

Theorem om0x 8176
Description: Ordinal multiplication with zero. Definition 8.15 of [TakeutiZaring] p. 62. Unlike om0 8174, this version works whether or not 𝐴 is an ordinal. However, since it is an artifact of our particular function value definition outside the domain, we will not use it in order to be conventional and present it only as a curiosity. (Contributed by NM, 1-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
om0x (𝐴 ·o ∅) = ∅

Proof of Theorem om0x
StepHypRef Expression
1 om0 8174 . . 3 (𝐴 ∈ On → (𝐴 ·o ∅) = ∅)
21adantr 484 . 2 ((𝐴 ∈ On ∧ ∅ ∈ On) → (𝐴 ·o ∅) = ∅)
3 fnom 8166 . . . 4 ·o Fn (On × On)
43fndmi 6442 . . 3 dom ·o = (On × On)
54ndmov 7349 . 2 (¬ (𝐴 ∈ On ∧ ∅ ∈ On) → (𝐴 ·o ∅) = ∅)
62, 5pm2.61i 185 1 (𝐴 ·o ∅) = ∅
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1542  wcel 2113  c0 4212   × cxp 5524  Oncon0 6173  (class class class)co 7171   ·o comu 8130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5168  ax-nul 5175  ax-pr 5297  ax-un 7480
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3683  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-ov 7174  df-oprab 7175  df-mpo 7176  df-om 7601  df-1st 7715  df-2nd 7716  df-wrecs 7977  df-recs 8038  df-rdg 8076  df-omul 8137
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator