MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om0x Structured version   Visualization version   GIF version

Theorem om0x 8147
Description: Ordinal multiplication with zero. Definition 8.15 of [TakeutiZaring] p. 62. Unlike om0 8145, this version works whether or not 𝐴 is an ordinal. However, since it is an artifact of our particular function value definition outside the domain, we will not use it in order to be conventional and present it only as a curiosity. (Contributed by NM, 1-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
om0x (𝐴 ·o ∅) = ∅

Proof of Theorem om0x
StepHypRef Expression
1 om0 8145 . . 3 (𝐴 ∈ On → (𝐴 ·o ∅) = ∅)
21adantr 483 . 2 ((𝐴 ∈ On ∧ ∅ ∈ On) → (𝐴 ·o ∅) = ∅)
3 fnom 8137 . . . 4 ·o Fn (On × On)
4 fndm 6458 . . . 4 ( ·o Fn (On × On) → dom ·o = (On × On))
53, 4ax-mp 5 . . 3 dom ·o = (On × On)
65ndmov 7335 . 2 (¬ (𝐴 ∈ On ∧ ∅ ∈ On) → (𝐴 ·o ∅) = ∅)
72, 6pm2.61i 184 1 (𝐴 ·o ∅) = ∅
Colors of variables: wff setvar class
Syntax hints:  wa 398   = wceq 1536  wcel 2113  c0 4294   × cxp 5556  dom cdm 5558  Oncon0 6194   Fn wfn 6353  (class class class)co 7159   ·o comu 8103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-omul 8110
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator