| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > foco2 | Structured version Visualization version GIF version | ||
| Description: If a composition of two functions is surjective, then the function on the left is surjective. (Contributed by Jeff Madsen, 16-Jun-2011.) (Proof shortened by JJ, 14-Jul-2021.) |
| Ref | Expression |
|---|---|
| foco2 | ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶) → 𝐹:𝐵–onto→𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | foelrn 7102 | . . . . . 6 ⊢ (((𝐹 ∘ 𝐺):𝐴–onto→𝐶 ∧ 𝑦 ∈ 𝐶) → ∃𝑧 ∈ 𝐴 𝑦 = ((𝐹 ∘ 𝐺)‘𝑧)) | |
| 2 | ffvelcdm 7076 | . . . . . . . . 9 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝑧 ∈ 𝐴) → (𝐺‘𝑧) ∈ 𝐵) | |
| 3 | fvco3 6983 | . . . . . . . . 9 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝑧 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝑧) = (𝐹‘(𝐺‘𝑧))) | |
| 4 | fveq2 6881 | . . . . . . . . . 10 ⊢ (𝑥 = (𝐺‘𝑧) → (𝐹‘𝑥) = (𝐹‘(𝐺‘𝑧))) | |
| 5 | 4 | rspceeqv 3629 | . . . . . . . . 9 ⊢ (((𝐺‘𝑧) ∈ 𝐵 ∧ ((𝐹 ∘ 𝐺)‘𝑧) = (𝐹‘(𝐺‘𝑧))) → ∃𝑥 ∈ 𝐵 ((𝐹 ∘ 𝐺)‘𝑧) = (𝐹‘𝑥)) |
| 6 | 2, 3, 5 | syl2anc 584 | . . . . . . . 8 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝑧 ∈ 𝐴) → ∃𝑥 ∈ 𝐵 ((𝐹 ∘ 𝐺)‘𝑧) = (𝐹‘𝑥)) |
| 7 | eqeq1 2740 | . . . . . . . . 9 ⊢ (𝑦 = ((𝐹 ∘ 𝐺)‘𝑧) → (𝑦 = (𝐹‘𝑥) ↔ ((𝐹 ∘ 𝐺)‘𝑧) = (𝐹‘𝑥))) | |
| 8 | 7 | rexbidv 3165 | . . . . . . . 8 ⊢ (𝑦 = ((𝐹 ∘ 𝐺)‘𝑧) → (∃𝑥 ∈ 𝐵 𝑦 = (𝐹‘𝑥) ↔ ∃𝑥 ∈ 𝐵 ((𝐹 ∘ 𝐺)‘𝑧) = (𝐹‘𝑥))) |
| 9 | 6, 8 | syl5ibrcom 247 | . . . . . . 7 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝑧 ∈ 𝐴) → (𝑦 = ((𝐹 ∘ 𝐺)‘𝑧) → ∃𝑥 ∈ 𝐵 𝑦 = (𝐹‘𝑥))) |
| 10 | 9 | rexlimdva 3142 | . . . . . 6 ⊢ (𝐺:𝐴⟶𝐵 → (∃𝑧 ∈ 𝐴 𝑦 = ((𝐹 ∘ 𝐺)‘𝑧) → ∃𝑥 ∈ 𝐵 𝑦 = (𝐹‘𝑥))) |
| 11 | 1, 10 | syl5 34 | . . . . 5 ⊢ (𝐺:𝐴⟶𝐵 → (((𝐹 ∘ 𝐺):𝐴–onto→𝐶 ∧ 𝑦 ∈ 𝐶) → ∃𝑥 ∈ 𝐵 𝑦 = (𝐹‘𝑥))) |
| 12 | 11 | impl 455 | . . . 4 ⊢ (((𝐺:𝐴⟶𝐵 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶) ∧ 𝑦 ∈ 𝐶) → ∃𝑥 ∈ 𝐵 𝑦 = (𝐹‘𝑥)) |
| 13 | 12 | ralrimiva 3133 | . . 3 ⊢ ((𝐺:𝐴⟶𝐵 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶) → ∀𝑦 ∈ 𝐶 ∃𝑥 ∈ 𝐵 𝑦 = (𝐹‘𝑥)) |
| 14 | 13 | anim2i 617 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ (𝐺:𝐴⟶𝐵 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶)) → (𝐹:𝐵⟶𝐶 ∧ ∀𝑦 ∈ 𝐶 ∃𝑥 ∈ 𝐵 𝑦 = (𝐹‘𝑥))) |
| 15 | 3anass 1094 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶) ↔ (𝐹:𝐵⟶𝐶 ∧ (𝐺:𝐴⟶𝐵 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶))) | |
| 16 | dffo3 7097 | . 2 ⊢ (𝐹:𝐵–onto→𝐶 ↔ (𝐹:𝐵⟶𝐶 ∧ ∀𝑦 ∈ 𝐶 ∃𝑥 ∈ 𝐵 𝑦 = (𝐹‘𝑥))) | |
| 17 | 14, 15, 16 | 3imtr4i 292 | 1 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶) → 𝐹:𝐵–onto→𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 ∘ ccom 5663 ⟶wf 6532 –onto→wfo 6534 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fo 6542 df-fv 6544 |
| This theorem is referenced by: fcoresfo 47067 |
| Copyright terms: Public domain | W3C validator |