MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foco2 Structured version   Visualization version   GIF version

Theorem foco2 6864
Description: If a composition of two functions is surjective, then the function on the left is surjective. (Contributed by Jeff Madsen, 16-Jun-2011.) (Proof shortened by JJ, 14-Jul-2021.)
Assertion
Ref Expression
foco2 ((𝐹:𝐵𝐶𝐺:𝐴𝐵 ∧ (𝐹𝐺):𝐴onto𝐶) → 𝐹:𝐵onto𝐶)

Proof of Theorem foco2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 foelrn 6863 . . . . . 6 (((𝐹𝐺):𝐴onto𝐶𝑦𝐶) → ∃𝑧𝐴 𝑦 = ((𝐹𝐺)‘𝑧))
2 ffvelrn 6840 . . . . . . . . 9 ((𝐺:𝐴𝐵𝑧𝐴) → (𝐺𝑧) ∈ 𝐵)
3 fvco3 6751 . . . . . . . . 9 ((𝐺:𝐴𝐵𝑧𝐴) → ((𝐹𝐺)‘𝑧) = (𝐹‘(𝐺𝑧)))
4 fveq2 6661 . . . . . . . . . 10 (𝑥 = (𝐺𝑧) → (𝐹𝑥) = (𝐹‘(𝐺𝑧)))
54rspceeqv 3624 . . . . . . . . 9 (((𝐺𝑧) ∈ 𝐵 ∧ ((𝐹𝐺)‘𝑧) = (𝐹‘(𝐺𝑧))) → ∃𝑥𝐵 ((𝐹𝐺)‘𝑧) = (𝐹𝑥))
62, 3, 5syl2anc 587 . . . . . . . 8 ((𝐺:𝐴𝐵𝑧𝐴) → ∃𝑥𝐵 ((𝐹𝐺)‘𝑧) = (𝐹𝑥))
7 eqeq1 2828 . . . . . . . . 9 (𝑦 = ((𝐹𝐺)‘𝑧) → (𝑦 = (𝐹𝑥) ↔ ((𝐹𝐺)‘𝑧) = (𝐹𝑥)))
87rexbidv 3289 . . . . . . . 8 (𝑦 = ((𝐹𝐺)‘𝑧) → (∃𝑥𝐵 𝑦 = (𝐹𝑥) ↔ ∃𝑥𝐵 ((𝐹𝐺)‘𝑧) = (𝐹𝑥)))
96, 8syl5ibrcom 250 . . . . . . 7 ((𝐺:𝐴𝐵𝑧𝐴) → (𝑦 = ((𝐹𝐺)‘𝑧) → ∃𝑥𝐵 𝑦 = (𝐹𝑥)))
109rexlimdva 3276 . . . . . 6 (𝐺:𝐴𝐵 → (∃𝑧𝐴 𝑦 = ((𝐹𝐺)‘𝑧) → ∃𝑥𝐵 𝑦 = (𝐹𝑥)))
111, 10syl5 34 . . . . 5 (𝐺:𝐴𝐵 → (((𝐹𝐺):𝐴onto𝐶𝑦𝐶) → ∃𝑥𝐵 𝑦 = (𝐹𝑥)))
1211impl 459 . . . 4 (((𝐺:𝐴𝐵 ∧ (𝐹𝐺):𝐴onto𝐶) ∧ 𝑦𝐶) → ∃𝑥𝐵 𝑦 = (𝐹𝑥))
1312ralrimiva 3177 . . 3 ((𝐺:𝐴𝐵 ∧ (𝐹𝐺):𝐴onto𝐶) → ∀𝑦𝐶𝑥𝐵 𝑦 = (𝐹𝑥))
1413anim2i 619 . 2 ((𝐹:𝐵𝐶 ∧ (𝐺:𝐴𝐵 ∧ (𝐹𝐺):𝐴onto𝐶)) → (𝐹:𝐵𝐶 ∧ ∀𝑦𝐶𝑥𝐵 𝑦 = (𝐹𝑥)))
15 3anass 1092 . 2 ((𝐹:𝐵𝐶𝐺:𝐴𝐵 ∧ (𝐹𝐺):𝐴onto𝐶) ↔ (𝐹:𝐵𝐶 ∧ (𝐺:𝐴𝐵 ∧ (𝐹𝐺):𝐴onto𝐶)))
16 dffo3 6859 . 2 (𝐹:𝐵onto𝐶 ↔ (𝐹:𝐵𝐶 ∧ ∀𝑦𝐶𝑥𝐵 𝑦 = (𝐹𝑥)))
1714, 15, 163imtr4i 295 1 ((𝐹:𝐵𝐶𝐺:𝐴𝐵 ∧ (𝐹𝐺):𝐴onto𝐶) → 𝐹:𝐵onto𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  wral 3133  wrex 3134  ccom 5546  wf 6339  ontowfo 6341  cfv 6343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-fo 6349  df-fv 6351
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator