![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > foco2 | Structured version Visualization version GIF version |
Description: If a composition of two functions is surjective, then the function on the left is surjective. (Contributed by Jeff Madsen, 16-Jun-2011.) (Proof shortened by JJ, 14-Jul-2021.) |
Ref | Expression |
---|---|
foco2 | ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶) → 𝐹:𝐵–onto→𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | foelrn 7127 | . . . . . 6 ⊢ (((𝐹 ∘ 𝐺):𝐴–onto→𝐶 ∧ 𝑦 ∈ 𝐶) → ∃𝑧 ∈ 𝐴 𝑦 = ((𝐹 ∘ 𝐺)‘𝑧)) | |
2 | ffvelcdm 7101 | . . . . . . . . 9 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝑧 ∈ 𝐴) → (𝐺‘𝑧) ∈ 𝐵) | |
3 | fvco3 7008 | . . . . . . . . 9 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝑧 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝑧) = (𝐹‘(𝐺‘𝑧))) | |
4 | fveq2 6907 | . . . . . . . . . 10 ⊢ (𝑥 = (𝐺‘𝑧) → (𝐹‘𝑥) = (𝐹‘(𝐺‘𝑧))) | |
5 | 4 | rspceeqv 3645 | . . . . . . . . 9 ⊢ (((𝐺‘𝑧) ∈ 𝐵 ∧ ((𝐹 ∘ 𝐺)‘𝑧) = (𝐹‘(𝐺‘𝑧))) → ∃𝑥 ∈ 𝐵 ((𝐹 ∘ 𝐺)‘𝑧) = (𝐹‘𝑥)) |
6 | 2, 3, 5 | syl2anc 584 | . . . . . . . 8 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝑧 ∈ 𝐴) → ∃𝑥 ∈ 𝐵 ((𝐹 ∘ 𝐺)‘𝑧) = (𝐹‘𝑥)) |
7 | eqeq1 2739 | . . . . . . . . 9 ⊢ (𝑦 = ((𝐹 ∘ 𝐺)‘𝑧) → (𝑦 = (𝐹‘𝑥) ↔ ((𝐹 ∘ 𝐺)‘𝑧) = (𝐹‘𝑥))) | |
8 | 7 | rexbidv 3177 | . . . . . . . 8 ⊢ (𝑦 = ((𝐹 ∘ 𝐺)‘𝑧) → (∃𝑥 ∈ 𝐵 𝑦 = (𝐹‘𝑥) ↔ ∃𝑥 ∈ 𝐵 ((𝐹 ∘ 𝐺)‘𝑧) = (𝐹‘𝑥))) |
9 | 6, 8 | syl5ibrcom 247 | . . . . . . 7 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝑧 ∈ 𝐴) → (𝑦 = ((𝐹 ∘ 𝐺)‘𝑧) → ∃𝑥 ∈ 𝐵 𝑦 = (𝐹‘𝑥))) |
10 | 9 | rexlimdva 3153 | . . . . . 6 ⊢ (𝐺:𝐴⟶𝐵 → (∃𝑧 ∈ 𝐴 𝑦 = ((𝐹 ∘ 𝐺)‘𝑧) → ∃𝑥 ∈ 𝐵 𝑦 = (𝐹‘𝑥))) |
11 | 1, 10 | syl5 34 | . . . . 5 ⊢ (𝐺:𝐴⟶𝐵 → (((𝐹 ∘ 𝐺):𝐴–onto→𝐶 ∧ 𝑦 ∈ 𝐶) → ∃𝑥 ∈ 𝐵 𝑦 = (𝐹‘𝑥))) |
12 | 11 | impl 455 | . . . 4 ⊢ (((𝐺:𝐴⟶𝐵 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶) ∧ 𝑦 ∈ 𝐶) → ∃𝑥 ∈ 𝐵 𝑦 = (𝐹‘𝑥)) |
13 | 12 | ralrimiva 3144 | . . 3 ⊢ ((𝐺:𝐴⟶𝐵 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶) → ∀𝑦 ∈ 𝐶 ∃𝑥 ∈ 𝐵 𝑦 = (𝐹‘𝑥)) |
14 | 13 | anim2i 617 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ (𝐺:𝐴⟶𝐵 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶)) → (𝐹:𝐵⟶𝐶 ∧ ∀𝑦 ∈ 𝐶 ∃𝑥 ∈ 𝐵 𝑦 = (𝐹‘𝑥))) |
15 | 3anass 1094 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶) ↔ (𝐹:𝐵⟶𝐶 ∧ (𝐺:𝐴⟶𝐵 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶))) | |
16 | dffo3 7122 | . 2 ⊢ (𝐹:𝐵–onto→𝐶 ↔ (𝐹:𝐵⟶𝐶 ∧ ∀𝑦 ∈ 𝐶 ∃𝑥 ∈ 𝐵 𝑦 = (𝐹‘𝑥))) | |
17 | 14, 15, 16 | 3imtr4i 292 | 1 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶) → 𝐹:𝐵–onto→𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 ∘ ccom 5693 ⟶wf 6559 –onto→wfo 6561 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fo 6569 df-fv 6571 |
This theorem is referenced by: fcoresfo 47021 |
Copyright terms: Public domain | W3C validator |