Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > foco2 | Structured version Visualization version GIF version |
Description: If a composition of two functions is surjective, then the function on the left is surjective. (Contributed by Jeff Madsen, 16-Jun-2011.) (Proof shortened by JJ, 14-Jul-2021.) |
Ref | Expression |
---|---|
foco2 | ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶) → 𝐹:𝐵–onto→𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | foelrn 6984 | . . . . . 6 ⊢ (((𝐹 ∘ 𝐺):𝐴–onto→𝐶 ∧ 𝑦 ∈ 𝐶) → ∃𝑧 ∈ 𝐴 𝑦 = ((𝐹 ∘ 𝐺)‘𝑧)) | |
2 | ffvelrn 6961 | . . . . . . . . 9 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝑧 ∈ 𝐴) → (𝐺‘𝑧) ∈ 𝐵) | |
3 | fvco3 6869 | . . . . . . . . 9 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝑧 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝑧) = (𝐹‘(𝐺‘𝑧))) | |
4 | fveq2 6776 | . . . . . . . . . 10 ⊢ (𝑥 = (𝐺‘𝑧) → (𝐹‘𝑥) = (𝐹‘(𝐺‘𝑧))) | |
5 | 4 | rspceeqv 3576 | . . . . . . . . 9 ⊢ (((𝐺‘𝑧) ∈ 𝐵 ∧ ((𝐹 ∘ 𝐺)‘𝑧) = (𝐹‘(𝐺‘𝑧))) → ∃𝑥 ∈ 𝐵 ((𝐹 ∘ 𝐺)‘𝑧) = (𝐹‘𝑥)) |
6 | 2, 3, 5 | syl2anc 584 | . . . . . . . 8 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝑧 ∈ 𝐴) → ∃𝑥 ∈ 𝐵 ((𝐹 ∘ 𝐺)‘𝑧) = (𝐹‘𝑥)) |
7 | eqeq1 2742 | . . . . . . . . 9 ⊢ (𝑦 = ((𝐹 ∘ 𝐺)‘𝑧) → (𝑦 = (𝐹‘𝑥) ↔ ((𝐹 ∘ 𝐺)‘𝑧) = (𝐹‘𝑥))) | |
8 | 7 | rexbidv 3225 | . . . . . . . 8 ⊢ (𝑦 = ((𝐹 ∘ 𝐺)‘𝑧) → (∃𝑥 ∈ 𝐵 𝑦 = (𝐹‘𝑥) ↔ ∃𝑥 ∈ 𝐵 ((𝐹 ∘ 𝐺)‘𝑧) = (𝐹‘𝑥))) |
9 | 6, 8 | syl5ibrcom 246 | . . . . . . 7 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝑧 ∈ 𝐴) → (𝑦 = ((𝐹 ∘ 𝐺)‘𝑧) → ∃𝑥 ∈ 𝐵 𝑦 = (𝐹‘𝑥))) |
10 | 9 | rexlimdva 3212 | . . . . . 6 ⊢ (𝐺:𝐴⟶𝐵 → (∃𝑧 ∈ 𝐴 𝑦 = ((𝐹 ∘ 𝐺)‘𝑧) → ∃𝑥 ∈ 𝐵 𝑦 = (𝐹‘𝑥))) |
11 | 1, 10 | syl5 34 | . . . . 5 ⊢ (𝐺:𝐴⟶𝐵 → (((𝐹 ∘ 𝐺):𝐴–onto→𝐶 ∧ 𝑦 ∈ 𝐶) → ∃𝑥 ∈ 𝐵 𝑦 = (𝐹‘𝑥))) |
12 | 11 | impl 456 | . . . 4 ⊢ (((𝐺:𝐴⟶𝐵 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶) ∧ 𝑦 ∈ 𝐶) → ∃𝑥 ∈ 𝐵 𝑦 = (𝐹‘𝑥)) |
13 | 12 | ralrimiva 3103 | . . 3 ⊢ ((𝐺:𝐴⟶𝐵 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶) → ∀𝑦 ∈ 𝐶 ∃𝑥 ∈ 𝐵 𝑦 = (𝐹‘𝑥)) |
14 | 13 | anim2i 617 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ (𝐺:𝐴⟶𝐵 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶)) → (𝐹:𝐵⟶𝐶 ∧ ∀𝑦 ∈ 𝐶 ∃𝑥 ∈ 𝐵 𝑦 = (𝐹‘𝑥))) |
15 | 3anass 1094 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶) ↔ (𝐹:𝐵⟶𝐶 ∧ (𝐺:𝐴⟶𝐵 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶))) | |
16 | dffo3 6980 | . 2 ⊢ (𝐹:𝐵–onto→𝐶 ↔ (𝐹:𝐵⟶𝐶 ∧ ∀𝑦 ∈ 𝐶 ∃𝑥 ∈ 𝐵 𝑦 = (𝐹‘𝑥))) | |
17 | 14, 15, 16 | 3imtr4i 292 | 1 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵 ∧ (𝐹 ∘ 𝐺):𝐴–onto→𝐶) → 𝐹:𝐵–onto→𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 ∘ ccom 5595 ⟶wf 6431 –onto→wfo 6433 ‘cfv 6435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5225 ax-nul 5232 ax-pr 5354 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3433 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-br 5077 df-opab 5139 df-mpt 5160 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-iota 6393 df-fun 6437 df-fn 6438 df-f 6439 df-fo 6441 df-fv 6443 |
This theorem is referenced by: fcoresfo 44532 |
Copyright terms: Public domain | W3C validator |