Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2arymptfv Structured version   Visualization version   GIF version

Theorem 2arymptfv 45414
Description: The value of a binary (endo)function in maps-to notation. (Contributed by AV, 20-May-2024.)
Hypothesis
Ref Expression
2arympt.f 𝐹 = (𝑥 ∈ (𝑋m {0, 1}) ↦ ((𝑥‘0)𝑂(𝑥‘1)))
Assertion
Ref Expression
2arymptfv ((𝑋𝑉𝐴𝑋𝐵𝑋) → (𝐹‘{⟨0, 𝐴⟩, ⟨1, 𝐵⟩}) = (𝐴𝑂𝐵))
Distinct variable groups:   𝑥,𝑂   𝑥,𝑉   𝑥,𝑋   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem 2arymptfv
StepHypRef Expression
1 2arympt.f . 2 𝐹 = (𝑥 ∈ (𝑋m {0, 1}) ↦ ((𝑥‘0)𝑂(𝑥‘1)))
2 fveq1 6650 . . . . 5 (𝑥 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} → (𝑥‘0) = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩}‘0))
32adantl 486 . . . 4 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝑥 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}) → (𝑥‘0) = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩}‘0))
4 c0ex 10658 . . . . . . . 8 0 ∈ V
54a1i 11 . . . . . . 7 ((𝑋𝑉𝐴𝑋𝐵𝑋) → 0 ∈ V)
6 simp2 1135 . . . . . . 7 ((𝑋𝑉𝐴𝑋𝐵𝑋) → 𝐴𝑋)
7 0ne1 11730 . . . . . . . 8 0 ≠ 1
87a1i 11 . . . . . . 7 ((𝑋𝑉𝐴𝑋𝐵𝑋) → 0 ≠ 1)
95, 6, 83jca 1126 . . . . . 6 ((𝑋𝑉𝐴𝑋𝐵𝑋) → (0 ∈ V ∧ 𝐴𝑋 ∧ 0 ≠ 1))
109adantr 485 . . . . 5 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝑥 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}) → (0 ∈ V ∧ 𝐴𝑋 ∧ 0 ≠ 1))
11 fvpr1g 6938 . . . . 5 ((0 ∈ V ∧ 𝐴𝑋 ∧ 0 ≠ 1) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩}‘0) = 𝐴)
1210, 11syl 17 . . . 4 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝑥 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩}‘0) = 𝐴)
133, 12eqtrd 2794 . . 3 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝑥 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}) → (𝑥‘0) = 𝐴)
14 fveq1 6650 . . . 4 (𝑥 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} → (𝑥‘1) = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩}‘1))
15 1ex 10660 . . . . 5 1 ∈ V
16 simp3 1136 . . . . 5 ((𝑋𝑉𝐴𝑋𝐵𝑋) → 𝐵𝑋)
17 fvpr2g 6939 . . . . 5 ((1 ∈ V ∧ 𝐵𝑋 ∧ 0 ≠ 1) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩}‘1) = 𝐵)
1815, 16, 8, 17mp3an2i 1464 . . . 4 ((𝑋𝑉𝐴𝑋𝐵𝑋) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩}‘1) = 𝐵)
1914, 18sylan9eqr 2816 . . 3 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝑥 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}) → (𝑥‘1) = 𝐵)
2013, 19oveq12d 7161 . 2 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝑥 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}) → ((𝑥‘0)𝑂(𝑥‘1)) = (𝐴𝑂𝐵))
21 simp1 1134 . . 3 ((𝑋𝑉𝐴𝑋𝐵𝑋) → 𝑋𝑉)
224, 15, 73pm3.2i 1337 . . . 4 (0 ∈ V ∧ 1 ∈ V ∧ 0 ≠ 1)
2322a1i 11 . . 3 ((𝑋𝑉𝐴𝑋𝐵𝑋) → (0 ∈ V ∧ 1 ∈ V ∧ 0 ≠ 1))
24 3simpc 1148 . . 3 ((𝑋𝑉𝐴𝑋𝐵𝑋) → (𝐴𝑋𝐵𝑋))
25 fprmappr 45099 . . 3 ((𝑋𝑉 ∧ (0 ∈ V ∧ 1 ∈ V ∧ 0 ≠ 1) ∧ (𝐴𝑋𝐵𝑋)) → {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∈ (𝑋m {0, 1}))
2621, 23, 24, 25syl3anc 1369 . 2 ((𝑋𝑉𝐴𝑋𝐵𝑋) → {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∈ (𝑋m {0, 1}))
27 ovexd 7178 . 2 ((𝑋𝑉𝐴𝑋𝐵𝑋) → (𝐴𝑂𝐵) ∈ V)
281, 20, 26, 27fvmptd2 6760 1 ((𝑋𝑉𝐴𝑋𝐵𝑋) → (𝐹‘{⟨0, 𝐴⟩, ⟨1, 𝐵⟩}) = (𝐴𝑂𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400  w3a 1085   = wceq 1539  wcel 2112  wne 2949  Vcvv 3407  {cpr 4517  cop 4521  cmpt 5105  cfv 6328  (class class class)co 7143  m cmap 8409  0cc0 10560  1c1 10561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-mulcl 10622  ax-i2m1 10628  ax-1ne0 10629
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-ral 3073  df-rex 3074  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-op 4522  df-uni 4792  df-br 5026  df-opab 5088  df-mpt 5106  df-id 5423  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-fv 6336  df-ov 7146  df-oprab 7147  df-mpo 7148  df-map 8411
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator