Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2arymptfv Structured version   Visualization version   GIF version

Theorem 2arymptfv 48630
Description: The value of a binary (endo)function in maps-to notation. (Contributed by AV, 20-May-2024.)
Hypothesis
Ref Expression
2arympt.f 𝐹 = (𝑥 ∈ (𝑋m {0, 1}) ↦ ((𝑥‘0)𝑂(𝑥‘1)))
Assertion
Ref Expression
2arymptfv ((𝑋𝑉𝐴𝑋𝐵𝑋) → (𝐹‘{⟨0, 𝐴⟩, ⟨1, 𝐵⟩}) = (𝐴𝑂𝐵))
Distinct variable groups:   𝑥,𝑂   𝑥,𝑉   𝑥,𝑋   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem 2arymptfv
StepHypRef Expression
1 2arympt.f . 2 𝐹 = (𝑥 ∈ (𝑋m {0, 1}) ↦ ((𝑥‘0)𝑂(𝑥‘1)))
2 fveq1 6875 . . . . 5 (𝑥 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} → (𝑥‘0) = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩}‘0))
32adantl 481 . . . 4 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝑥 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}) → (𝑥‘0) = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩}‘0))
4 c0ex 11229 . . . . . . . 8 0 ∈ V
54a1i 11 . . . . . . 7 ((𝑋𝑉𝐴𝑋𝐵𝑋) → 0 ∈ V)
6 simp2 1137 . . . . . . 7 ((𝑋𝑉𝐴𝑋𝐵𝑋) → 𝐴𝑋)
7 0ne1 12311 . . . . . . . 8 0 ≠ 1
87a1i 11 . . . . . . 7 ((𝑋𝑉𝐴𝑋𝐵𝑋) → 0 ≠ 1)
95, 6, 83jca 1128 . . . . . 6 ((𝑋𝑉𝐴𝑋𝐵𝑋) → (0 ∈ V ∧ 𝐴𝑋 ∧ 0 ≠ 1))
109adantr 480 . . . . 5 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝑥 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}) → (0 ∈ V ∧ 𝐴𝑋 ∧ 0 ≠ 1))
11 fvpr1g 7182 . . . . 5 ((0 ∈ V ∧ 𝐴𝑋 ∧ 0 ≠ 1) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩}‘0) = 𝐴)
1210, 11syl 17 . . . 4 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝑥 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩}‘0) = 𝐴)
133, 12eqtrd 2770 . . 3 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝑥 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}) → (𝑥‘0) = 𝐴)
14 fveq1 6875 . . . 4 (𝑥 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} → (𝑥‘1) = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩}‘1))
15 1ex 11231 . . . . 5 1 ∈ V
16 simp3 1138 . . . . 5 ((𝑋𝑉𝐴𝑋𝐵𝑋) → 𝐵𝑋)
17 fvpr2g 7183 . . . . 5 ((1 ∈ V ∧ 𝐵𝑋 ∧ 0 ≠ 1) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩}‘1) = 𝐵)
1815, 16, 8, 17mp3an2i 1468 . . . 4 ((𝑋𝑉𝐴𝑋𝐵𝑋) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩}‘1) = 𝐵)
1914, 18sylan9eqr 2792 . . 3 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝑥 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}) → (𝑥‘1) = 𝐵)
2013, 19oveq12d 7423 . 2 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝑥 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}) → ((𝑥‘0)𝑂(𝑥‘1)) = (𝐴𝑂𝐵))
21 simp1 1136 . . 3 ((𝑋𝑉𝐴𝑋𝐵𝑋) → 𝑋𝑉)
224, 15, 73pm3.2i 1340 . . . 4 (0 ∈ V ∧ 1 ∈ V ∧ 0 ≠ 1)
2322a1i 11 . . 3 ((𝑋𝑉𝐴𝑋𝐵𝑋) → (0 ∈ V ∧ 1 ∈ V ∧ 0 ≠ 1))
24 3simpc 1150 . . 3 ((𝑋𝑉𝐴𝑋𝐵𝑋) → (𝐴𝑋𝐵𝑋))
25 fprmappr 48320 . . 3 ((𝑋𝑉 ∧ (0 ∈ V ∧ 1 ∈ V ∧ 0 ≠ 1) ∧ (𝐴𝑋𝐵𝑋)) → {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∈ (𝑋m {0, 1}))
2621, 23, 24, 25syl3anc 1373 . 2 ((𝑋𝑉𝐴𝑋𝐵𝑋) → {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∈ (𝑋m {0, 1}))
27 ovexd 7440 . 2 ((𝑋𝑉𝐴𝑋𝐵𝑋) → (𝐴𝑂𝐵) ∈ V)
281, 20, 26, 27fvmptd2 6994 1 ((𝑋𝑉𝐴𝑋𝐵𝑋) → (𝐹‘{⟨0, 𝐴⟩, ⟨1, 𝐵⟩}) = (𝐴𝑂𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  Vcvv 3459  {cpr 4603  cop 4607  cmpt 5201  cfv 6531  (class class class)co 7405  m cmap 8840  0cc0 11129  1c1 11130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-mulcl 11191  ax-i2m1 11197  ax-1ne0 11198
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8842
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator