Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2arymptfv Structured version   Visualization version   GIF version

Theorem 2arymptfv 48643
Description: The value of a binary (endo)function in maps-to notation. (Contributed by AV, 20-May-2024.)
Hypothesis
Ref Expression
2arympt.f 𝐹 = (𝑥 ∈ (𝑋m {0, 1}) ↦ ((𝑥‘0)𝑂(𝑥‘1)))
Assertion
Ref Expression
2arymptfv ((𝑋𝑉𝐴𝑋𝐵𝑋) → (𝐹‘{⟨0, 𝐴⟩, ⟨1, 𝐵⟩}) = (𝐴𝑂𝐵))
Distinct variable groups:   𝑥,𝑂   𝑥,𝑉   𝑥,𝑋   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem 2arymptfv
StepHypRef Expression
1 2arympt.f . 2 𝐹 = (𝑥 ∈ (𝑋m {0, 1}) ↦ ((𝑥‘0)𝑂(𝑥‘1)))
2 fveq1 6860 . . . . 5 (𝑥 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} → (𝑥‘0) = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩}‘0))
32adantl 481 . . . 4 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝑥 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}) → (𝑥‘0) = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩}‘0))
4 c0ex 11175 . . . . . . . 8 0 ∈ V
54a1i 11 . . . . . . 7 ((𝑋𝑉𝐴𝑋𝐵𝑋) → 0 ∈ V)
6 simp2 1137 . . . . . . 7 ((𝑋𝑉𝐴𝑋𝐵𝑋) → 𝐴𝑋)
7 0ne1 12264 . . . . . . . 8 0 ≠ 1
87a1i 11 . . . . . . 7 ((𝑋𝑉𝐴𝑋𝐵𝑋) → 0 ≠ 1)
95, 6, 83jca 1128 . . . . . 6 ((𝑋𝑉𝐴𝑋𝐵𝑋) → (0 ∈ V ∧ 𝐴𝑋 ∧ 0 ≠ 1))
109adantr 480 . . . . 5 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝑥 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}) → (0 ∈ V ∧ 𝐴𝑋 ∧ 0 ≠ 1))
11 fvpr1g 7167 . . . . 5 ((0 ∈ V ∧ 𝐴𝑋 ∧ 0 ≠ 1) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩}‘0) = 𝐴)
1210, 11syl 17 . . . 4 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝑥 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩}‘0) = 𝐴)
133, 12eqtrd 2765 . . 3 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝑥 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}) → (𝑥‘0) = 𝐴)
14 fveq1 6860 . . . 4 (𝑥 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} → (𝑥‘1) = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩}‘1))
15 1ex 11177 . . . . 5 1 ∈ V
16 simp3 1138 . . . . 5 ((𝑋𝑉𝐴𝑋𝐵𝑋) → 𝐵𝑋)
17 fvpr2g 7168 . . . . 5 ((1 ∈ V ∧ 𝐵𝑋 ∧ 0 ≠ 1) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩}‘1) = 𝐵)
1815, 16, 8, 17mp3an2i 1468 . . . 4 ((𝑋𝑉𝐴𝑋𝐵𝑋) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩}‘1) = 𝐵)
1914, 18sylan9eqr 2787 . . 3 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝑥 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}) → (𝑥‘1) = 𝐵)
2013, 19oveq12d 7408 . 2 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝑥 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}) → ((𝑥‘0)𝑂(𝑥‘1)) = (𝐴𝑂𝐵))
21 simp1 1136 . . 3 ((𝑋𝑉𝐴𝑋𝐵𝑋) → 𝑋𝑉)
224, 15, 73pm3.2i 1340 . . . 4 (0 ∈ V ∧ 1 ∈ V ∧ 0 ≠ 1)
2322a1i 11 . . 3 ((𝑋𝑉𝐴𝑋𝐵𝑋) → (0 ∈ V ∧ 1 ∈ V ∧ 0 ≠ 1))
24 3simpc 1150 . . 3 ((𝑋𝑉𝐴𝑋𝐵𝑋) → (𝐴𝑋𝐵𝑋))
25 fprmappr 48337 . . 3 ((𝑋𝑉 ∧ (0 ∈ V ∧ 1 ∈ V ∧ 0 ≠ 1) ∧ (𝐴𝑋𝐵𝑋)) → {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∈ (𝑋m {0, 1}))
2621, 23, 24, 25syl3anc 1373 . 2 ((𝑋𝑉𝐴𝑋𝐵𝑋) → {⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∈ (𝑋m {0, 1}))
27 ovexd 7425 . 2 ((𝑋𝑉𝐴𝑋𝐵𝑋) → (𝐴𝑂𝐵) ∈ V)
281, 20, 26, 27fvmptd2 6979 1 ((𝑋𝑉𝐴𝑋𝐵𝑋) → (𝐹‘{⟨0, 𝐴⟩, ⟨1, 𝐵⟩}) = (𝐴𝑂𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  Vcvv 3450  {cpr 4594  cop 4598  cmpt 5191  cfv 6514  (class class class)co 7390  m cmap 8802  0cc0 11075  1c1 11076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-mulcl 11137  ax-i2m1 11143  ax-1ne0 11144
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator