| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapsnop | Structured version Visualization version GIF version | ||
| Description: A singleton of an ordered pair as an element of the mapping operation. (Contributed by AV, 12-Apr-2019.) |
| Ref | Expression |
|---|---|
| mapsnop.f | ⊢ 𝐹 = {〈𝑋, 𝑌〉} |
| Ref | Expression |
|---|---|
| mapsnop | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑅 ∧ 𝑅 ∈ 𝑊) → 𝐹 ∈ (𝑅 ↑m {𝑋})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapsnop.f | . . . 4 ⊢ 𝐹 = {〈𝑋, 𝑌〉} | |
| 2 | fsng 7109 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑅) → (𝐹:{𝑋}⟶{𝑌} ↔ 𝐹 = {〈𝑋, 𝑌〉})) | |
| 3 | 2 | 3adant3 1132 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑅 ∧ 𝑅 ∈ 𝑊) → (𝐹:{𝑋}⟶{𝑌} ↔ 𝐹 = {〈𝑋, 𝑌〉})) |
| 4 | 1, 3 | mpbiri 258 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑅 ∧ 𝑅 ∈ 𝑊) → 𝐹:{𝑋}⟶{𝑌}) |
| 5 | snssi 4772 | . . . 4 ⊢ (𝑌 ∈ 𝑅 → {𝑌} ⊆ 𝑅) | |
| 6 | 5 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑅 ∧ 𝑅 ∈ 𝑊) → {𝑌} ⊆ 𝑅) |
| 7 | 4, 6 | fssd 6705 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑅 ∧ 𝑅 ∈ 𝑊) → 𝐹:{𝑋}⟶𝑅) |
| 8 | simp3 1138 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑅 ∧ 𝑅 ∈ 𝑊) → 𝑅 ∈ 𝑊) | |
| 9 | snex 5391 | . . 3 ⊢ {𝑋} ∈ V | |
| 10 | elmapg 8812 | . . 3 ⊢ ((𝑅 ∈ 𝑊 ∧ {𝑋} ∈ V) → (𝐹 ∈ (𝑅 ↑m {𝑋}) ↔ 𝐹:{𝑋}⟶𝑅)) | |
| 11 | 8, 9, 10 | sylancl 586 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑅 ∧ 𝑅 ∈ 𝑊) → (𝐹 ∈ (𝑅 ↑m {𝑋}) ↔ 𝐹:{𝑋}⟶𝑅)) |
| 12 | 7, 11 | mpbird 257 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑅 ∧ 𝑅 ∈ 𝑊) → 𝐹 ∈ (𝑅 ↑m {𝑋})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 {csn 4589 〈cop 4595 ⟶wf 6507 (class class class)co 7387 ↑m cmap 8799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 |
| This theorem is referenced by: lincvalsng 48405 lcosn0 48409 |
| Copyright terms: Public domain | W3C validator |