Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapsnop Structured version   Visualization version   GIF version

Theorem mapsnop 42922
Description: A singleton of an ordered pair as an element of the mapping operation. (Contributed by AV, 12-Apr-2019.)
Hypothesis
Ref Expression
mapsnop.f 𝐹 = {⟨𝑋, 𝑌⟩}
Assertion
Ref Expression
mapsnop ((𝑋𝑉𝑌𝑅𝑅𝑊) → 𝐹 ∈ (𝑅𝑚 {𝑋}))

Proof of Theorem mapsnop
StepHypRef Expression
1 mapsnop.f . . . 4 𝐹 = {⟨𝑋, 𝑌⟩}
2 fsng 6631 . . . . 5 ((𝑋𝑉𝑌𝑅) → (𝐹:{𝑋}⟶{𝑌} ↔ 𝐹 = {⟨𝑋, 𝑌⟩}))
323adant3 1163 . . . 4 ((𝑋𝑉𝑌𝑅𝑅𝑊) → (𝐹:{𝑋}⟶{𝑌} ↔ 𝐹 = {⟨𝑋, 𝑌⟩}))
41, 3mpbiri 250 . . 3 ((𝑋𝑉𝑌𝑅𝑅𝑊) → 𝐹:{𝑋}⟶{𝑌})
5 snssi 4527 . . . 4 (𝑌𝑅 → {𝑌} ⊆ 𝑅)
653ad2ant2 1165 . . 3 ((𝑋𝑉𝑌𝑅𝑅𝑊) → {𝑌} ⊆ 𝑅)
74, 6fssd 6270 . 2 ((𝑋𝑉𝑌𝑅𝑅𝑊) → 𝐹:{𝑋}⟶𝑅)
8 simp3 1169 . . 3 ((𝑋𝑉𝑌𝑅𝑅𝑊) → 𝑅𝑊)
9 snex 5099 . . 3 {𝑋} ∈ V
10 elmapg 8108 . . 3 ((𝑅𝑊 ∧ {𝑋} ∈ V) → (𝐹 ∈ (𝑅𝑚 {𝑋}) ↔ 𝐹:{𝑋}⟶𝑅))
118, 9, 10sylancl 581 . 2 ((𝑋𝑉𝑌𝑅𝑅𝑊) → (𝐹 ∈ (𝑅𝑚 {𝑋}) ↔ 𝐹:{𝑋}⟶𝑅))
127, 11mpbird 249 1 ((𝑋𝑉𝑌𝑅𝑅𝑊) → 𝐹 ∈ (𝑅𝑚 {𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  w3a 1108   = wceq 1653  wcel 2157  Vcvv 3385  wss 3769  {csn 4368  cop 4374  wf 6097  (class class class)co 6878  𝑚 cmap 8095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-map 8097
This theorem is referenced by:  lincvalsng  43004  lcosn0  43008
  Copyright terms: Public domain W3C validator