Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapsnop Structured version   Visualization version   GIF version

Theorem mapsnop 44746
Description: A singleton of an ordered pair as an element of the mapping operation. (Contributed by AV, 12-Apr-2019.)
Hypothesis
Ref Expression
mapsnop.f 𝐹 = {⟨𝑋, 𝑌⟩}
Assertion
Ref Expression
mapsnop ((𝑋𝑉𝑌𝑅𝑅𝑊) → 𝐹 ∈ (𝑅m {𝑋}))

Proof of Theorem mapsnop
StepHypRef Expression
1 mapsnop.f . . . 4 𝐹 = {⟨𝑋, 𝑌⟩}
2 fsng 6876 . . . . 5 ((𝑋𝑉𝑌𝑅) → (𝐹:{𝑋}⟶{𝑌} ↔ 𝐹 = {⟨𝑋, 𝑌⟩}))
323adant3 1129 . . . 4 ((𝑋𝑉𝑌𝑅𝑅𝑊) → (𝐹:{𝑋}⟶{𝑌} ↔ 𝐹 = {⟨𝑋, 𝑌⟩}))
41, 3mpbiri 261 . . 3 ((𝑋𝑉𝑌𝑅𝑅𝑊) → 𝐹:{𝑋}⟶{𝑌})
5 snssi 4701 . . . 4 (𝑌𝑅 → {𝑌} ⊆ 𝑅)
653ad2ant2 1131 . . 3 ((𝑋𝑉𝑌𝑅𝑅𝑊) → {𝑌} ⊆ 𝑅)
74, 6fssd 6502 . 2 ((𝑋𝑉𝑌𝑅𝑅𝑊) → 𝐹:{𝑋}⟶𝑅)
8 simp3 1135 . . 3 ((𝑋𝑉𝑌𝑅𝑅𝑊) → 𝑅𝑊)
9 snex 5297 . . 3 {𝑋} ∈ V
10 elmapg 8402 . . 3 ((𝑅𝑊 ∧ {𝑋} ∈ V) → (𝐹 ∈ (𝑅m {𝑋}) ↔ 𝐹:{𝑋}⟶𝑅))
118, 9, 10sylancl 589 . 2 ((𝑋𝑉𝑌𝑅𝑅𝑊) → (𝐹 ∈ (𝑅m {𝑋}) ↔ 𝐹:{𝑋}⟶𝑅))
127, 11mpbird 260 1 ((𝑋𝑉𝑌𝑅𝑅𝑊) → 𝐹 ∈ (𝑅m {𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  w3a 1084   = wceq 1538  wcel 2111  Vcvv 3441  wss 3881  {csn 4525  cop 4531  wf 6320  (class class class)co 7135  m cmap 8389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-map 8391
This theorem is referenced by:  lincvalsng  44825  lcosn0  44829
  Copyright terms: Public domain W3C validator