Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapsnop | Structured version Visualization version GIF version |
Description: A singleton of an ordered pair as an element of the mapping operation. (Contributed by AV, 12-Apr-2019.) |
Ref | Expression |
---|---|
mapsnop.f | ⊢ 𝐹 = {〈𝑋, 𝑌〉} |
Ref | Expression |
---|---|
mapsnop | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑅 ∧ 𝑅 ∈ 𝑊) → 𝐹 ∈ (𝑅 ↑m {𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapsnop.f | . . . 4 ⊢ 𝐹 = {〈𝑋, 𝑌〉} | |
2 | fsng 7009 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑅) → (𝐹:{𝑋}⟶{𝑌} ↔ 𝐹 = {〈𝑋, 𝑌〉})) | |
3 | 2 | 3adant3 1131 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑅 ∧ 𝑅 ∈ 𝑊) → (𝐹:{𝑋}⟶{𝑌} ↔ 𝐹 = {〈𝑋, 𝑌〉})) |
4 | 1, 3 | mpbiri 257 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑅 ∧ 𝑅 ∈ 𝑊) → 𝐹:{𝑋}⟶{𝑌}) |
5 | snssi 4741 | . . . 4 ⊢ (𝑌 ∈ 𝑅 → {𝑌} ⊆ 𝑅) | |
6 | 5 | 3ad2ant2 1133 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑅 ∧ 𝑅 ∈ 𝑊) → {𝑌} ⊆ 𝑅) |
7 | 4, 6 | fssd 6618 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑅 ∧ 𝑅 ∈ 𝑊) → 𝐹:{𝑋}⟶𝑅) |
8 | simp3 1137 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑅 ∧ 𝑅 ∈ 𝑊) → 𝑅 ∈ 𝑊) | |
9 | snex 5354 | . . 3 ⊢ {𝑋} ∈ V | |
10 | elmapg 8628 | . . 3 ⊢ ((𝑅 ∈ 𝑊 ∧ {𝑋} ∈ V) → (𝐹 ∈ (𝑅 ↑m {𝑋}) ↔ 𝐹:{𝑋}⟶𝑅)) | |
11 | 8, 9, 10 | sylancl 586 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑅 ∧ 𝑅 ∈ 𝑊) → (𝐹 ∈ (𝑅 ↑m {𝑋}) ↔ 𝐹:{𝑋}⟶𝑅)) |
12 | 7, 11 | mpbird 256 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑅 ∧ 𝑅 ∈ 𝑊) → 𝐹 ∈ (𝑅 ↑m {𝑋})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 {csn 4561 〈cop 4567 ⟶wf 6429 (class class class)co 7275 ↑m cmap 8615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 |
This theorem is referenced by: lincvalsng 45757 lcosn0 45761 |
Copyright terms: Public domain | W3C validator |