Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapsnop Structured version   Visualization version   GIF version

Theorem mapsnop 48332
Description: A singleton of an ordered pair as an element of the mapping operation. (Contributed by AV, 12-Apr-2019.)
Hypothesis
Ref Expression
mapsnop.f 𝐹 = {⟨𝑋, 𝑌⟩}
Assertion
Ref Expression
mapsnop ((𝑋𝑉𝑌𝑅𝑅𝑊) → 𝐹 ∈ (𝑅m {𝑋}))

Proof of Theorem mapsnop
StepHypRef Expression
1 mapsnop.f . . . 4 𝐹 = {⟨𝑋, 𝑌⟩}
2 fsng 7109 . . . . 5 ((𝑋𝑉𝑌𝑅) → (𝐹:{𝑋}⟶{𝑌} ↔ 𝐹 = {⟨𝑋, 𝑌⟩}))
323adant3 1132 . . . 4 ((𝑋𝑉𝑌𝑅𝑅𝑊) → (𝐹:{𝑋}⟶{𝑌} ↔ 𝐹 = {⟨𝑋, 𝑌⟩}))
41, 3mpbiri 258 . . 3 ((𝑋𝑉𝑌𝑅𝑅𝑊) → 𝐹:{𝑋}⟶{𝑌})
5 snssi 4772 . . . 4 (𝑌𝑅 → {𝑌} ⊆ 𝑅)
653ad2ant2 1134 . . 3 ((𝑋𝑉𝑌𝑅𝑅𝑊) → {𝑌} ⊆ 𝑅)
74, 6fssd 6705 . 2 ((𝑋𝑉𝑌𝑅𝑅𝑊) → 𝐹:{𝑋}⟶𝑅)
8 simp3 1138 . . 3 ((𝑋𝑉𝑌𝑅𝑅𝑊) → 𝑅𝑊)
9 snex 5391 . . 3 {𝑋} ∈ V
10 elmapg 8812 . . 3 ((𝑅𝑊 ∧ {𝑋} ∈ V) → (𝐹 ∈ (𝑅m {𝑋}) ↔ 𝐹:{𝑋}⟶𝑅))
118, 9, 10sylancl 586 . 2 ((𝑋𝑉𝑌𝑅𝑅𝑊) → (𝐹 ∈ (𝑅m {𝑋}) ↔ 𝐹:{𝑋}⟶𝑅))
127, 11mpbird 257 1 ((𝑋𝑉𝑌𝑅𝑅𝑊) → 𝐹 ∈ (𝑅m {𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3447  wss 3914  {csn 4589  cop 4595  wf 6507  (class class class)co 7387  m cmap 8799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801
This theorem is referenced by:  lincvalsng  48405  lcosn0  48409
  Copyright terms: Public domain W3C validator