![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapsnop | Structured version Visualization version GIF version |
Description: A singleton of an ordered pair as an element of the mapping operation. (Contributed by AV, 12-Apr-2019.) |
Ref | Expression |
---|---|
mapsnop.f | ⊢ 𝐹 = {⟨𝑋, 𝑌⟩} |
Ref | Expression |
---|---|
mapsnop | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑅 ∧ 𝑅 ∈ 𝑊) → 𝐹 ∈ (𝑅 ↑m {𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapsnop.f | . . . 4 ⊢ 𝐹 = {⟨𝑋, 𝑌⟩} | |
2 | fsng 7136 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑅) → (𝐹:{𝑋}⟶{𝑌} ↔ 𝐹 = {⟨𝑋, 𝑌⟩})) | |
3 | 2 | 3adant3 1130 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑅 ∧ 𝑅 ∈ 𝑊) → (𝐹:{𝑋}⟶{𝑌} ↔ 𝐹 = {⟨𝑋, 𝑌⟩})) |
4 | 1, 3 | mpbiri 257 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑅 ∧ 𝑅 ∈ 𝑊) → 𝐹:{𝑋}⟶{𝑌}) |
5 | snssi 4810 | . . . 4 ⊢ (𝑌 ∈ 𝑅 → {𝑌} ⊆ 𝑅) | |
6 | 5 | 3ad2ant2 1132 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑅 ∧ 𝑅 ∈ 𝑊) → {𝑌} ⊆ 𝑅) |
7 | 4, 6 | fssd 6734 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑅 ∧ 𝑅 ∈ 𝑊) → 𝐹:{𝑋}⟶𝑅) |
8 | simp3 1136 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑅 ∧ 𝑅 ∈ 𝑊) → 𝑅 ∈ 𝑊) | |
9 | snex 5430 | . . 3 ⊢ {𝑋} ∈ V | |
10 | elmapg 8835 | . . 3 ⊢ ((𝑅 ∈ 𝑊 ∧ {𝑋} ∈ V) → (𝐹 ∈ (𝑅 ↑m {𝑋}) ↔ 𝐹:{𝑋}⟶𝑅)) | |
11 | 8, 9, 10 | sylancl 584 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑅 ∧ 𝑅 ∈ 𝑊) → (𝐹 ∈ (𝑅 ↑m {𝑋}) ↔ 𝐹:{𝑋}⟶𝑅)) |
12 | 7, 11 | mpbird 256 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑅 ∧ 𝑅 ∈ 𝑊) → 𝐹 ∈ (𝑅 ↑m {𝑋})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1539 ∈ wcel 2104 Vcvv 3472 ⊆ wss 3947 {csn 4627 ⟨cop 4633 ⟶wf 6538 (class class class)co 7411 ↑m cmap 8822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-map 8824 |
This theorem is referenced by: lincvalsng 47184 lcosn0 47188 |
Copyright terms: Public domain | W3C validator |