![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fucofval | Structured version Visualization version GIF version |
Description: Value of the function giving the functor composition bifunctor. Hypotheses fucofval.c and fucofval.d are not redundant (fucofvalne 48894). (Contributed by Zhi Wang, 29-Sep-2025.) |
Ref | Expression |
---|---|
fucofval.c | ⊢ (𝜑 → 𝐶 ∈ 𝑇) |
fucofval.d | ⊢ (𝜑 → 𝐷 ∈ 𝑈) |
fucofval.e | ⊢ (𝜑 → 𝐸 ∈ 𝑉) |
fucofval.o | ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = ⚬ ) |
fucofval.w | ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) |
Ref | Expression |
---|---|
fucofval | ⊢ (𝜑 → ⚬ = 〈( ∘func ↾ 𝑊), (𝑢 ∈ 𝑊, 𝑣 ∈ 𝑊 ↦ ⦋(1st ‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st ‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd ‘(1st ‘𝑢)) / 𝑙⦌⦋(1st ‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st ‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝐷 Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝐶 Nat 𝐷)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5478 | . . 3 ⊢ 〈𝐶, 𝐷〉 ∈ V | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ V) |
3 | fucofval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑇) | |
4 | fucofval.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑈) | |
5 | op1stg 8034 | . . 3 ⊢ ((𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑈) → (1st ‘〈𝐶, 𝐷〉) = 𝐶) | |
6 | 3, 4, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → (1st ‘〈𝐶, 𝐷〉) = 𝐶) |
7 | op2ndg 8035 | . . 3 ⊢ ((𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑈) → (2nd ‘〈𝐶, 𝐷〉) = 𝐷) | |
8 | 3, 4, 7 | syl2anc 584 | . 2 ⊢ (𝜑 → (2nd ‘〈𝐶, 𝐷〉) = 𝐷) |
9 | fucofval.e | . 2 ⊢ (𝜑 → 𝐸 ∈ 𝑉) | |
10 | fucofval.o | . 2 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = ⚬ ) | |
11 | fucofval.w | . 2 ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
12 | 2, 6, 8, 9, 10, 11 | fucofvalg 48887 | 1 ⊢ (𝜑 → ⚬ = 〈( ∘func ↾ 𝑊), (𝑢 ∈ 𝑊, 𝑣 ∈ 𝑊 ↦ ⦋(1st ‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st ‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd ‘(1st ‘𝑢)) / 𝑙⦌⦋(1st ‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st ‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝐷 Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝐶 Nat 𝐷)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3481 ⦋csb 3911 〈cop 4640 ↦ cmpt 5234 × cxp 5691 ↾ cres 5695 ‘cfv 6569 (class class class)co 7438 ∈ cmpo 7440 1st c1st 8020 2nd c2nd 8021 Basecbs 17254 compcco 17319 Func cfunc 17914 ∘func ccofu 17916 Nat cnat 18005 ∘F cfuco 48885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-iota 6522 df-fun 6571 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-1st 8022 df-2nd 8023 df-fuco 48886 |
This theorem is referenced by: fucoelvv 48889 fuco1 48890 fuco2 48892 |
Copyright terms: Public domain | W3C validator |