| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fucofval | Structured version Visualization version GIF version | ||
| Description: Value of the function giving the functor composition bifunctor. Hypotheses fucofval.c and fucofval.d are not redundant (fucofvalne 49356). (Contributed by Zhi Wang, 29-Sep-2025.) |
| Ref | Expression |
|---|---|
| fucofval.c | ⊢ (𝜑 → 𝐶 ∈ 𝑇) |
| fucofval.d | ⊢ (𝜑 → 𝐷 ∈ 𝑈) |
| fucofval.e | ⊢ (𝜑 → 𝐸 ∈ 𝑉) |
| fucofval.o | ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = ⚬ ) |
| fucofval.w | ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) |
| Ref | Expression |
|---|---|
| fucofval | ⊢ (𝜑 → ⚬ = 〈( ∘func ↾ 𝑊), (𝑢 ∈ 𝑊, 𝑣 ∈ 𝑊 ↦ ⦋(1st ‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st ‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd ‘(1st ‘𝑢)) / 𝑙⦌⦋(1st ‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st ‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝐷 Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝐶 Nat 𝐷)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex 5404 | . . 3 ⊢ 〈𝐶, 𝐷〉 ∈ V | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ V) |
| 3 | fucofval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑇) | |
| 4 | fucofval.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑈) | |
| 5 | op1stg 7933 | . . 3 ⊢ ((𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑈) → (1st ‘〈𝐶, 𝐷〉) = 𝐶) | |
| 6 | 3, 4, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → (1st ‘〈𝐶, 𝐷〉) = 𝐶) |
| 7 | op2ndg 7934 | . . 3 ⊢ ((𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑈) → (2nd ‘〈𝐶, 𝐷〉) = 𝐷) | |
| 8 | 3, 4, 7 | syl2anc 584 | . 2 ⊢ (𝜑 → (2nd ‘〈𝐶, 𝐷〉) = 𝐷) |
| 9 | fucofval.e | . 2 ⊢ (𝜑 → 𝐸 ∈ 𝑉) | |
| 10 | fucofval.o | . 2 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = ⚬ ) | |
| 11 | fucofval.w | . 2 ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
| 12 | 2, 6, 8, 9, 10, 11 | fucofvalg 49349 | 1 ⊢ (𝜑 → ⚬ = 〈( ∘func ↾ 𝑊), (𝑢 ∈ 𝑊, 𝑣 ∈ 𝑊 ↦ ⦋(1st ‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st ‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd ‘(1st ‘𝑢)) / 𝑙⦌⦋(1st ‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st ‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝐷 Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝐶 Nat 𝐷)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⦋csb 3850 〈cop 4582 ↦ cmpt 5172 × cxp 5614 ↾ cres 5618 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 1st c1st 7919 2nd c2nd 7920 Basecbs 17117 compcco 17170 Func cfunc 17758 ∘func ccofu 17760 Nat cnat 17848 ∘F cfuco 49347 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-fuco 49348 |
| This theorem is referenced by: fucoelvv 49351 fuco1 49352 fuco2 49354 |
| Copyright terms: Public domain | W3C validator |