| Mathbox for Zhi Wang | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fuco1 | Structured version Visualization version GIF version | ||
| Description: The object part of the functor composition bifunctor. (Contributed by Zhi Wang, 29-Sep-2025.) | 
| Ref | Expression | 
|---|---|
| fucofval.c | ⊢ (𝜑 → 𝐶 ∈ 𝑇) | 
| fucofval.d | ⊢ (𝜑 → 𝐷 ∈ 𝑈) | 
| fucofval.e | ⊢ (𝜑 → 𝐸 ∈ 𝑉) | 
| fuco1.o | ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) | 
| fuco1.w | ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | 
| Ref | Expression | 
|---|---|
| fuco1 | ⊢ (𝜑 → 𝑂 = ( ∘func ↾ 𝑊)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fucofval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑇) | |
| 2 | fucofval.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑈) | |
| 3 | fucofval.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝑉) | |
| 4 | fuco1.o | . . 3 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) | |
| 5 | fuco1.w | . . 3 ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
| 6 | 1, 2, 3, 4, 5 | fucofval 48974 | . 2 ⊢ (𝜑 → 〈𝑂, 𝑃〉 = 〈( ∘func ↾ 𝑊), (𝑢 ∈ 𝑊, 𝑣 ∈ 𝑊 ↦ ⦋(1st ‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st ‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd ‘(1st ‘𝑢)) / 𝑙⦌⦋(1st ‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st ‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝐷 Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝐶 Nat 𝐷)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉) | 
| 7 | 1, 2, 3, 4 | fucoelvv 48975 | . . . 4 ⊢ (𝜑 → 〈𝑂, 𝑃〉 ∈ (V × V)) | 
| 8 | opelxp1 5709 | . . . 4 ⊢ (〈𝑂, 𝑃〉 ∈ (V × V) → 𝑂 ∈ V) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝑂 ∈ V) | 
| 10 | opelxp2 5710 | . . . 4 ⊢ (〈𝑂, 𝑃〉 ∈ (V × V) → 𝑃 ∈ V) | |
| 11 | 7, 10 | syl 17 | . . 3 ⊢ (𝜑 → 𝑃 ∈ V) | 
| 12 | opth1g 5465 | . . 3 ⊢ ((𝑂 ∈ V ∧ 𝑃 ∈ V) → (〈𝑂, 𝑃〉 = 〈( ∘func ↾ 𝑊), (𝑢 ∈ 𝑊, 𝑣 ∈ 𝑊 ↦ ⦋(1st ‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st ‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd ‘(1st ‘𝑢)) / 𝑙⦌⦋(1st ‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st ‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝐷 Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝐶 Nat 𝐷)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉 → 𝑂 = ( ∘func ↾ 𝑊))) | |
| 13 | 9, 11, 12 | syl2anc 584 | . 2 ⊢ (𝜑 → (〈𝑂, 𝑃〉 = 〈( ∘func ↾ 𝑊), (𝑢 ∈ 𝑊, 𝑣 ∈ 𝑊 ↦ ⦋(1st ‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st ‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd ‘(1st ‘𝑢)) / 𝑙⦌⦋(1st ‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st ‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝐷 Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝐶 Nat 𝐷)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉 → 𝑂 = ( ∘func ↾ 𝑊))) | 
| 14 | 6, 13 | mpd 15 | 1 ⊢ (𝜑 → 𝑂 = ( ∘func ↾ 𝑊)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3464 ⦋csb 3881 〈cop 4614 ↦ cmpt 5207 × cxp 5665 ↾ cres 5669 ‘cfv 6542 (class class class)co 7414 ∈ cmpo 7416 1st c1st 7995 2nd c2nd 7996 Basecbs 17230 compcco 17286 Func cfunc 17871 ∘func ccofu 17873 Nat cnat 17961 ∘F cfuco 48971 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7997 df-2nd 7998 df-cofu 17877 df-fuco 48972 | 
| This theorem is referenced by: fucof1 48977 fuco11 48981 fuco11b 48992 | 
| Copyright terms: Public domain | W3C validator |