| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fuco1 | Structured version Visualization version GIF version | ||
| Description: The object part of the functor composition bifunctor. (Contributed by Zhi Wang, 29-Sep-2025.) |
| Ref | Expression |
|---|---|
| fucofval.c | ⊢ (𝜑 → 𝐶 ∈ 𝑇) |
| fucofval.d | ⊢ (𝜑 → 𝐷 ∈ 𝑈) |
| fucofval.e | ⊢ (𝜑 → 𝐸 ∈ 𝑉) |
| fuco1.o | ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
| fuco1.w | ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) |
| Ref | Expression |
|---|---|
| fuco1 | ⊢ (𝜑 → 𝑂 = ( ∘func ↾ 𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fucofval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑇) | |
| 2 | fucofval.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑈) | |
| 3 | fucofval.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝑉) | |
| 4 | fuco1.o | . . 3 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) | |
| 5 | fuco1.w | . . 3 ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
| 6 | 1, 2, 3, 4, 5 | fucofval 49305 | . 2 ⊢ (𝜑 → 〈𝑂, 𝑃〉 = 〈( ∘func ↾ 𝑊), (𝑢 ∈ 𝑊, 𝑣 ∈ 𝑊 ↦ ⦋(1st ‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st ‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd ‘(1st ‘𝑢)) / 𝑙⦌⦋(1st ‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st ‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝐷 Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝐶 Nat 𝐷)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉) |
| 7 | 1, 2, 3, 4 | fucoelvv 49306 | . . . 4 ⊢ (𝜑 → 〈𝑂, 𝑃〉 ∈ (V × V)) |
| 8 | opelxp1 5665 | . . . 4 ⊢ (〈𝑂, 𝑃〉 ∈ (V × V) → 𝑂 ∈ V) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → 𝑂 ∈ V) |
| 10 | opelxp2 5666 | . . . 4 ⊢ (〈𝑂, 𝑃〉 ∈ (V × V) → 𝑃 ∈ V) | |
| 11 | 7, 10 | syl 17 | . . 3 ⊢ (𝜑 → 𝑃 ∈ V) |
| 12 | opth1g 5425 | . . 3 ⊢ ((𝑂 ∈ V ∧ 𝑃 ∈ V) → (〈𝑂, 𝑃〉 = 〈( ∘func ↾ 𝑊), (𝑢 ∈ 𝑊, 𝑣 ∈ 𝑊 ↦ ⦋(1st ‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st ‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd ‘(1st ‘𝑢)) / 𝑙⦌⦋(1st ‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st ‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝐷 Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝐶 Nat 𝐷)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉 → 𝑂 = ( ∘func ↾ 𝑊))) | |
| 13 | 9, 11, 12 | syl2anc 584 | . 2 ⊢ (𝜑 → (〈𝑂, 𝑃〉 = 〈( ∘func ↾ 𝑊), (𝑢 ∈ 𝑊, 𝑣 ∈ 𝑊 ↦ ⦋(1st ‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st ‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd ‘(1st ‘𝑢)) / 𝑙⦌⦋(1st ‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st ‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝐷 Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝐶 Nat 𝐷)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉 → 𝑂 = ( ∘func ↾ 𝑊))) |
| 14 | 6, 13 | mpd 15 | 1 ⊢ (𝜑 → 𝑂 = ( ∘func ↾ 𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ⦋csb 3853 〈cop 4585 ↦ cmpt 5176 × cxp 5621 ↾ cres 5625 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 1st c1st 7929 2nd c2nd 7930 Basecbs 17138 compcco 17191 Func cfunc 17779 ∘func ccofu 17781 Nat cnat 17869 ∘F cfuco 49302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-cofu 17785 df-fuco 49303 |
| This theorem is referenced by: fucof1 49308 fuco11 49312 fuco11b 49323 |
| Copyright terms: Public domain | W3C validator |