Proof of Theorem fuco2
Step | Hyp | Ref
| Expression |
1 | | fucofval.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ 𝑇) |
2 | | fucofval.d |
. . . 4
⊢ (𝜑 → 𝐷 ∈ 𝑈) |
3 | | fucofval.e |
. . . 4
⊢ (𝜑 → 𝐸 ∈ 𝑉) |
4 | | fuco1.o |
. . . 4
⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
5 | | fuco1.w |
. . . 4
⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) |
6 | 1, 2, 3, 4, 5 | fucofval 48888 |
. . 3
⊢ (𝜑 → 〈𝑂, 𝑃〉 = 〈(
∘func ↾ 𝑊), (𝑢 ∈ 𝑊, 𝑣 ∈ 𝑊 ↦ ⦋(1st
‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st
‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd
‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝐷 Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝐶 Nat 𝐷)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉) |
7 | 1, 2, 3, 4 | fucoelvv 48889 |
. . . . 5
⊢ (𝜑 → 〈𝑂, 𝑃〉 ∈ (V ×
V)) |
8 | | opelxp1 5735 |
. . . . 5
⊢
(〈𝑂, 𝑃〉 ∈ (V × V)
→ 𝑂 ∈
V) |
9 | 7, 8 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑂 ∈ V) |
10 | | opelxp2 5736 |
. . . . 5
⊢
(〈𝑂, 𝑃〉 ∈ (V × V)
→ 𝑃 ∈
V) |
11 | 7, 10 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑃 ∈ V) |
12 | | opthg 5491 |
. . . 4
⊢ ((𝑂 ∈ V ∧ 𝑃 ∈ V) → (〈𝑂, 𝑃〉 = 〈(
∘func ↾ 𝑊), (𝑢 ∈ 𝑊, 𝑣 ∈ 𝑊 ↦ ⦋(1st
‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st
‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd
‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝐷 Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝐶 Nat 𝐷)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉 ↔ (𝑂 = ( ∘func ↾
𝑊) ∧ 𝑃 = (𝑢 ∈ 𝑊, 𝑣 ∈ 𝑊 ↦ ⦋(1st
‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st
‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd
‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝐷 Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝐶 Nat 𝐷)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))))) |
13 | 9, 11, 12 | syl2anc 584 |
. . 3
⊢ (𝜑 → (〈𝑂, 𝑃〉 = 〈(
∘func ↾ 𝑊), (𝑢 ∈ 𝑊, 𝑣 ∈ 𝑊 ↦ ⦋(1st
‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st
‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd
‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝐷 Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝐶 Nat 𝐷)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉 ↔ (𝑂 = ( ∘func ↾
𝑊) ∧ 𝑃 = (𝑢 ∈ 𝑊, 𝑣 ∈ 𝑊 ↦ ⦋(1st
‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st
‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd
‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝐷 Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝐶 Nat 𝐷)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))))) |
14 | 6, 13 | mpbid 232 |
. 2
⊢ (𝜑 → (𝑂 = ( ∘func ↾
𝑊) ∧ 𝑃 = (𝑢 ∈ 𝑊, 𝑣 ∈ 𝑊 ↦ ⦋(1st
‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st
‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd
‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝐷 Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝐶 Nat 𝐷)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥)))))))) |
15 | 14 | simprd 495 |
1
⊢ (𝜑 → 𝑃 = (𝑢 ∈ 𝑊, 𝑣 ∈ 𝑊 ↦ ⦋(1st
‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st
‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd
‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝐷 Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝐶 Nat 𝐷)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))) |