Step | Hyp | Ref
| Expression |
1 | | fucofval.c |
. . 3
⊢ (𝜑 → 𝐶 ∈ 𝑇) |
2 | | fucofval.d |
. . 3
⊢ (𝜑 → 𝐷 ∈ 𝑈) |
3 | | fucofval.e |
. . 3
⊢ (𝜑 → 𝐸 ∈ 𝑉) |
4 | | fucofval.o |
. . 3
⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = ⚬ ) |
5 | | eqidd 2738 |
. . 3
⊢ (𝜑 → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) |
6 | 1, 2, 3, 4, 5 | fucofval 48888 |
. 2
⊢ (𝜑 → ⚬ = 〈(
∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))), (𝑢 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)), 𝑣 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ↦ ⦋(1st
‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st
‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd
‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝐷 Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝐶 Nat 𝐷)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉) |
7 | | df-cofu 17920 |
. . . . 5
⊢
∘func = (𝑔 ∈ V, 𝑓 ∈ V ↦ 〈((1st
‘𝑔) ∘
(1st ‘𝑓)),
(𝑥 ∈ dom dom
(2nd ‘𝑓),
𝑦 ∈ dom dom
(2nd ‘𝑓)
↦ ((((1st ‘𝑓)‘𝑥)(2nd ‘𝑔)((1st ‘𝑓)‘𝑦)) ∘ (𝑥(2nd ‘𝑓)𝑦)))〉) |
8 | 7 | mpofun 7564 |
. . . 4
⊢ Fun
∘func |
9 | | ovex 7471 |
. . . . 5
⊢ (𝐷 Func 𝐸) ∈ V |
10 | | ovex 7471 |
. . . . 5
⊢ (𝐶 Func 𝐷) ∈ V |
11 | 9, 10 | xpex 7779 |
. . . 4
⊢ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∈ V |
12 | | resfunexg 7242 |
. . . 4
⊢ ((Fun
∘func ∧ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∈ V) → (
∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∈ V) |
13 | 8, 11, 12 | mp2an 692 |
. . 3
⊢ (
∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∈ V |
14 | 11, 11 | mpoex 8112 |
. . 3
⊢ (𝑢 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)), 𝑣 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ↦ ⦋(1st
‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st
‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd
‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝐷 Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝐶 Nat 𝐷)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥)))))) ∈ V |
15 | 13, 14 | opelvv 5733 |
. 2
⊢ 〈(
∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))), (𝑢 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)), 𝑣 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ↦ ⦋(1st
‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st
‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd
‘(1st ‘𝑢)) / 𝑙⦌⦋(1st
‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st
‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝐷 Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝐶 Nat 𝐷)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉 ∈ (V ×
V) |
16 | 6, 15 | eqeltrdi 2849 |
1
⊢ (𝜑 → ⚬ ∈ (V ×
V)) |