Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucoelvv Structured version   Visualization version   GIF version

Theorem fucoelvv 49215
Description: A functor composition bifunctor is an ordered pair. Enables 1st2ndb 8017. (Contributed by Zhi Wang, 29-Sep-2025.)
Hypotheses
Ref Expression
fucofval.c (𝜑𝐶𝑇)
fucofval.d (𝜑𝐷𝑈)
fucofval.e (𝜑𝐸𝑉)
fucofval.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = )
Assertion
Ref Expression
fucoelvv (𝜑 ∈ (V × V))

Proof of Theorem fucoelvv
Dummy variables 𝑎 𝑏 𝑓 𝑔 𝑘 𝑙 𝑚 𝑟 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fucofval.c . . 3 (𝜑𝐶𝑇)
2 fucofval.d . . 3 (𝜑𝐷𝑈)
3 fucofval.e . . 3 (𝜑𝐸𝑉)
4 fucofval.o . . 3 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = )
5 eqidd 2731 . . 3 (𝜑 → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
61, 2, 3, 4, 5fucofval 49214 . 2 (𝜑 = ⟨( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))), (𝑢 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)), 𝑣 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ↦ (1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
7 df-cofu 17828 . . . . 5 func = (𝑔 ∈ V, 𝑓 ∈ V ↦ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩)
87mpofun 7520 . . . 4 Fun ∘func
9 ovex 7427 . . . . 5 (𝐷 Func 𝐸) ∈ V
10 ovex 7427 . . . . 5 (𝐶 Func 𝐷) ∈ V
119, 10xpex 7736 . . . 4 ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∈ V
12 resfunexg 7196 . . . 4 ((Fun ∘func ∧ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∈ V) → ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∈ V)
138, 11, 12mp2an 692 . . 3 ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∈ V
1411, 11mpoex 8067 . . 3 (𝑢 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)), 𝑣 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ↦ (1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))) ∈ V
1513, 14opelvv 5686 . 2 ⟨( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))), (𝑢 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)), 𝑣 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ↦ (1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩ ∈ (V × V)
166, 15eqeltrdi 2837 1 (𝜑 ∈ (V × V))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3455  csb 3870  cop 4603  cmpt 5196   × cxp 5644  dom cdm 5646  cres 5648  ccom 5650  Fun wfun 6513  cfv 6519  (class class class)co 7394  cmpo 7396  1st c1st 7975  2nd c2nd 7976  Basecbs 17185  compcco 17238   Func cfunc 17822  func ccofu 17824   Nat cnat 17912  F cfuco 49211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-1st 7977  df-2nd 7978  df-cofu 17828  df-fuco 49212
This theorem is referenced by:  fuco1  49216  fuco2  49218  fuco11b  49232  fuco11bALT  49233  fucofunca  49255  fucolid  49256  fucorid  49257  precofvalALT  49263
  Copyright terms: Public domain W3C validator