| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fucoelvv | Structured version Visualization version GIF version | ||
| Description: A functor composition bifunctor is an ordered pair. Enables 1st2ndb 8017. (Contributed by Zhi Wang, 29-Sep-2025.) |
| Ref | Expression |
|---|---|
| fucofval.c | ⊢ (𝜑 → 𝐶 ∈ 𝑇) |
| fucofval.d | ⊢ (𝜑 → 𝐷 ∈ 𝑈) |
| fucofval.e | ⊢ (𝜑 → 𝐸 ∈ 𝑉) |
| fucofval.o | ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = ⚬ ) |
| Ref | Expression |
|---|---|
| fucoelvv | ⊢ (𝜑 → ⚬ ∈ (V × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fucofval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑇) | |
| 2 | fucofval.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑈) | |
| 3 | fucofval.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝑉) | |
| 4 | fucofval.o | . . 3 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = ⚬ ) | |
| 5 | eqidd 2731 | . . 3 ⊢ (𝜑 → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
| 6 | 1, 2, 3, 4, 5 | fucofval 49214 | . 2 ⊢ (𝜑 → ⚬ = 〈( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))), (𝑢 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)), 𝑣 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ↦ ⦋(1st ‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st ‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd ‘(1st ‘𝑢)) / 𝑙⦌⦋(1st ‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st ‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝐷 Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝐶 Nat 𝐷)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉) |
| 7 | df-cofu 17828 | . . . . 5 ⊢ ∘func = (𝑔 ∈ V, 𝑓 ∈ V ↦ 〈((1st ‘𝑔) ∘ (1st ‘𝑓)), (𝑥 ∈ dom dom (2nd ‘𝑓), 𝑦 ∈ dom dom (2nd ‘𝑓) ↦ ((((1st ‘𝑓)‘𝑥)(2nd ‘𝑔)((1st ‘𝑓)‘𝑦)) ∘ (𝑥(2nd ‘𝑓)𝑦)))〉) | |
| 8 | 7 | mpofun 7520 | . . . 4 ⊢ Fun ∘func |
| 9 | ovex 7427 | . . . . 5 ⊢ (𝐷 Func 𝐸) ∈ V | |
| 10 | ovex 7427 | . . . . 5 ⊢ (𝐶 Func 𝐷) ∈ V | |
| 11 | 9, 10 | xpex 7736 | . . . 4 ⊢ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∈ V |
| 12 | resfunexg 7196 | . . . 4 ⊢ ((Fun ∘func ∧ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∈ V) → ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∈ V) | |
| 13 | 8, 11, 12 | mp2an 692 | . . 3 ⊢ ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∈ V |
| 14 | 11, 11 | mpoex 8067 | . . 3 ⊢ (𝑢 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)), 𝑣 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ↦ ⦋(1st ‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st ‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd ‘(1st ‘𝑢)) / 𝑙⦌⦋(1st ‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st ‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝐷 Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝐶 Nat 𝐷)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥)))))) ∈ V |
| 15 | 13, 14 | opelvv 5686 | . 2 ⊢ 〈( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))), (𝑢 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)), 𝑣 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ↦ ⦋(1st ‘(2nd ‘𝑢)) / 𝑓⦌⦋(1st ‘(1st ‘𝑢)) / 𝑘⦌⦋(2nd ‘(1st ‘𝑢)) / 𝑙⦌⦋(1st ‘(2nd ‘𝑣)) / 𝑚⦌⦋(1st ‘(1st ‘𝑣)) / 𝑟⦌(𝑏 ∈ ((1st ‘𝑢)(𝐷 Nat 𝐸)(1st ‘𝑣)), 𝑎 ∈ ((2nd ‘𝑢)(𝐶 Nat 𝐷)(2nd ‘𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚‘𝑥))(〈(𝑘‘(𝑓‘𝑥)), (𝑘‘(𝑚‘𝑥))〉(comp‘𝐸)(𝑟‘(𝑚‘𝑥)))(((𝑓‘𝑥)𝑙(𝑚‘𝑥))‘(𝑎‘𝑥))))))〉 ∈ (V × V) |
| 16 | 6, 15 | eqeltrdi 2837 | 1 ⊢ (𝜑 → ⚬ ∈ (V × V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3455 ⦋csb 3870 〈cop 4603 ↦ cmpt 5196 × cxp 5644 dom cdm 5646 ↾ cres 5648 ∘ ccom 5650 Fun wfun 6513 ‘cfv 6519 (class class class)co 7394 ∈ cmpo 7396 1st c1st 7975 2nd c2nd 7976 Basecbs 17185 compcco 17238 Func cfunc 17822 ∘func ccofu 17824 Nat cnat 17912 ∘F cfuco 49211 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-ov 7397 df-oprab 7398 df-mpo 7399 df-1st 7977 df-2nd 7978 df-cofu 17828 df-fuco 49212 |
| This theorem is referenced by: fuco1 49216 fuco2 49218 fuco11b 49232 fuco11bALT 49233 fucofunca 49255 fucolid 49256 fucorid 49257 precofvalALT 49263 |
| Copyright terms: Public domain | W3C validator |