Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucoelvv Structured version   Visualization version   GIF version

Theorem fucoelvv 49351
Description: A functor composition bifunctor is an ordered pair. Enables 1st2ndb 7961. (Contributed by Zhi Wang, 29-Sep-2025.)
Hypotheses
Ref Expression
fucofval.c (𝜑𝐶𝑇)
fucofval.d (𝜑𝐷𝑈)
fucofval.e (𝜑𝐸𝑉)
fucofval.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = )
Assertion
Ref Expression
fucoelvv (𝜑 ∈ (V × V))

Proof of Theorem fucoelvv
Dummy variables 𝑎 𝑏 𝑓 𝑔 𝑘 𝑙 𝑚 𝑟 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fucofval.c . . 3 (𝜑𝐶𝑇)
2 fucofval.d . . 3 (𝜑𝐷𝑈)
3 fucofval.e . . 3 (𝜑𝐸𝑉)
4 fucofval.o . . 3 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = )
5 eqidd 2732 . . 3 (𝜑 → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
61, 2, 3, 4, 5fucofval 49350 . 2 (𝜑 = ⟨( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))), (𝑢 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)), 𝑣 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ↦ (1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
7 df-cofu 17764 . . . . 5 func = (𝑔 ∈ V, 𝑓 ∈ V ↦ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩)
87mpofun 7470 . . . 4 Fun ∘func
9 ovex 7379 . . . . 5 (𝐷 Func 𝐸) ∈ V
10 ovex 7379 . . . . 5 (𝐶 Func 𝐷) ∈ V
119, 10xpex 7686 . . . 4 ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∈ V
12 resfunexg 7149 . . . 4 ((Fun ∘func ∧ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∈ V) → ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∈ V)
138, 11, 12mp2an 692 . . 3 ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∈ V
1411, 11mpoex 8011 . . 3 (𝑢 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)), 𝑣 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ↦ (1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))) ∈ V
1513, 14opelvv 5656 . 2 ⟨( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))), (𝑢 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)), 𝑣 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ↦ (1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩ ∈ (V × V)
166, 15eqeltrdi 2839 1 (𝜑 ∈ (V × V))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  csb 3850  cop 4582  cmpt 5172   × cxp 5614  dom cdm 5616  cres 5618  ccom 5620  Fun wfun 6475  cfv 6481  (class class class)co 7346  cmpo 7348  1st c1st 7919  2nd c2nd 7920  Basecbs 17117  compcco 17170   Func cfunc 17758  func ccofu 17760   Nat cnat 17848  F cfuco 49347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-cofu 17764  df-fuco 49348
This theorem is referenced by:  fuco1  49352  fuco2  49354  fuco11b  49368  fuco11bALT  49369  fucofunca  49391  fucolid  49392  fucorid  49393  precofvalALT  49399
  Copyright terms: Public domain W3C validator