Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucoelvv Structured version   Visualization version   GIF version

Theorem fucoelvv 48967
Description: A functor composition bifunctor is an ordered pair. Enables 1st2ndb 8035. (Contributed by Zhi Wang, 29-Sep-2025.)
Hypotheses
Ref Expression
fucofval.c (𝜑𝐶𝑇)
fucofval.d (𝜑𝐷𝑈)
fucofval.e (𝜑𝐸𝑉)
fucofval.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = )
Assertion
Ref Expression
fucoelvv (𝜑 ∈ (V × V))

Proof of Theorem fucoelvv
Dummy variables 𝑎 𝑏 𝑓 𝑔 𝑘 𝑙 𝑚 𝑟 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fucofval.c . . 3 (𝜑𝐶𝑇)
2 fucofval.d . . 3 (𝜑𝐷𝑈)
3 fucofval.e . . 3 (𝜑𝐸𝑉)
4 fucofval.o . . 3 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = )
5 eqidd 2735 . . 3 (𝜑 → ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
61, 2, 3, 4, 5fucofval 48966 . 2 (𝜑 = ⟨( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))), (𝑢 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)), 𝑣 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ↦ (1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
7 df-cofu 17875 . . . . 5 func = (𝑔 ∈ V, 𝑓 ∈ V ↦ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩)
87mpofun 7538 . . . 4 Fun ∘func
9 ovex 7445 . . . . 5 (𝐷 Func 𝐸) ∈ V
10 ovex 7445 . . . . 5 (𝐶 Func 𝐷) ∈ V
119, 10xpex 7754 . . . 4 ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∈ V
12 resfunexg 7216 . . . 4 ((Fun ∘func ∧ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ∈ V) → ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∈ V)
138, 11, 12mp2an 692 . . 3 ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) ∈ V
1411, 11mpoex 8085 . . 3 (𝑢 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)), 𝑣 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ↦ (1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥)))))) ∈ V
1513, 14opelvv 5705 . 2 ⟨( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))), (𝑢 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)), 𝑣 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) ↦ (1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝐷 Nat 𝐸)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝐶 Nat 𝐷)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝐸)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩ ∈ (V × V)
166, 15eqeltrdi 2841 1 (𝜑 ∈ (V × V))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  Vcvv 3463  csb 3879  cop 4612  cmpt 5205   × cxp 5663  dom cdm 5665  cres 5667  ccom 5669  Fun wfun 6534  cfv 6540  (class class class)co 7412  cmpo 7414  1st c1st 7993  2nd c2nd 7994  Basecbs 17228  compcco 17284   Func cfunc 17869  func ccofu 17871   Nat cnat 17959  F cfuco 48963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7995  df-2nd 7996  df-cofu 17875  df-fuco 48964
This theorem is referenced by:  fuco1  48968  fuco2  48970  fuco11b  48984  fuco11bALT  48985  fucofunca  49007  fucolid  49008  fucorid  49009  precofvalALT  49015
  Copyright terms: Public domain W3C validator