| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcf1 | Structured version Visualization version GIF version | ||
| Description: The object part of a functor is a function on objects. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| funcf1.b | ⊢ 𝐵 = (Base‘𝐷) |
| funcf1.c | ⊢ 𝐶 = (Base‘𝐸) |
| funcf1.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| Ref | Expression |
|---|---|
| funcf1 | ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcf1.f | . . 3 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
| 2 | funcf1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐷) | |
| 3 | funcf1.c | . . . 4 ⊢ 𝐶 = (Base‘𝐸) | |
| 4 | eqid 2731 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 5 | eqid 2731 | . . . 4 ⊢ (Hom ‘𝐸) = (Hom ‘𝐸) | |
| 6 | eqid 2731 | . . . 4 ⊢ (Id‘𝐷) = (Id‘𝐷) | |
| 7 | eqid 2731 | . . . 4 ⊢ (Id‘𝐸) = (Id‘𝐸) | |
| 8 | eqid 2731 | . . . 4 ⊢ (comp‘𝐷) = (comp‘𝐷) | |
| 9 | eqid 2731 | . . . 4 ⊢ (comp‘𝐸) = (comp‘𝐸) | |
| 10 | df-br 5092 | . . . . . . 7 ⊢ (𝐹(𝐷 Func 𝐸)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) | |
| 11 | 1, 10 | sylib 218 | . . . . . 6 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) |
| 12 | funcrcl 17767 | . . . . . 6 ⊢ (〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) | |
| 13 | 11, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
| 14 | 13 | simpld 494 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 15 | 13 | simprd 495 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ Cat) |
| 16 | 2, 3, 4, 5, 6, 7, 8, 9, 14, 15 | isfunc 17768 | . . 3 ⊢ (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺 ↔ (𝐹:𝐵⟶𝐶 ∧ 𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))(Hom ‘𝐸)(𝐹‘(2nd ‘𝑧))) ↑m ((Hom ‘𝐷)‘𝑧)) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝐺𝑥)‘((Id‘𝐷)‘𝑥)) = ((Id‘𝐸)‘(𝐹‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉(comp‘𝐸)(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚)))))) |
| 17 | 1, 16 | mpbid 232 | . 2 ⊢ (𝜑 → (𝐹:𝐵⟶𝐶 ∧ 𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))(Hom ‘𝐸)(𝐹‘(2nd ‘𝑧))) ↑m ((Hom ‘𝐷)‘𝑧)) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝐺𝑥)‘((Id‘𝐷)‘𝑥)) = ((Id‘𝐸)‘(𝐹‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉(comp‘𝐸)(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚))))) |
| 18 | 17 | simp1d 1142 | 1 ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 〈cop 4582 class class class wbr 5091 × cxp 5614 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 1st c1st 7919 2nd c2nd 7920 ↑m cmap 8750 Xcixp 8821 Basecbs 17117 Hom chom 17169 compcco 17170 Catccat 17567 Idccid 17568 Func cfunc 17758 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-ixp 8822 df-func 17762 |
| This theorem is referenced by: funcsect 17776 funcinv 17777 funciso 17778 funcoppc 17779 cofu1 17788 cofucl 17792 cofuass 17793 cofulid 17794 cofurid 17795 funcres 17800 funcres2 17802 wunfunc 17805 funcres2c 17807 fullpropd 17826 fthsect 17831 fthinv 17832 fthmon 17833 ffthiso 17835 cofull 17840 cofth 17841 fuccocl 17871 fucidcl 17872 fuclid 17873 fucrid 17874 fucass 17875 fucsect 17879 fucinv 17880 invfuc 17881 fuciso 17882 natpropd 17883 fucpropd 17884 catciso 18015 prfval 18102 prfcl 18106 prf1st 18107 prf2nd 18108 1st2ndprf 18109 evlfcllem 18124 evlfcl 18125 curf1cl 18131 curfcl 18135 uncf1 18139 uncf2 18140 curfuncf 18141 uncfcurf 18142 diag1cl 18145 curf2ndf 18150 yon1cl 18166 oyon1cl 18174 yonedalem3a 18177 yonedalem4c 18180 yonedalem3b 18182 yonedalem3 18183 yonedainv 18184 yonffthlem 18185 yoniso 18188 func0g 49120 funchomf 49128 cofidf2a 49148 cofidf1a 49149 cofidf1 49152 imasubc 49182 imassc 49184 imaid 49185 imasubc3 49187 upciclem2 49198 upciclem3 49199 upeu2 49203 uppropd 49212 oppcup 49238 uptrlem1 49241 uptrlem3 49243 uptrar 49247 natoppf 49260 diag1 49335 diag1f1 49338 fuco111x 49362 fuco11idx 49366 fuco22natlem1 49373 fuco22natlem2 49374 fuco22natlem3 49375 fuco22natlem 49376 fucoid 49379 fuco23alem 49382 fucocolem1 49384 fucocolem2 49385 fucocolem3 49386 fucocolem4 49387 fucoco 49388 fucolid 49392 fucorid 49393 fucorid2 49394 precofvallem 49397 precofvalALT 49399 precofval2 49400 prcof22a 49423 prcofdiag1 49424 prcofdiag 49425 fucoppcco 49440 oppfdiag1 49445 oppfdiag 49447 functhincfun 49480 fullthinc 49481 thincciso2 49486 functermc 49539 fulltermc 49542 termcfuncval 49563 funcsn 49572 uobeqterm 49577 concom 49694 coccom 49695 |
| Copyright terms: Public domain | W3C validator |