Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funcf1 | Structured version Visualization version GIF version |
Description: The object part of a functor is a function on objects. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
funcf1.b | ⊢ 𝐵 = (Base‘𝐷) |
funcf1.c | ⊢ 𝐶 = (Base‘𝐸) |
funcf1.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
Ref | Expression |
---|---|
funcf1 | ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcf1.f | . . 3 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
2 | funcf1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐷) | |
3 | funcf1.c | . . . 4 ⊢ 𝐶 = (Base‘𝐸) | |
4 | eqid 2738 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
5 | eqid 2738 | . . . 4 ⊢ (Hom ‘𝐸) = (Hom ‘𝐸) | |
6 | eqid 2738 | . . . 4 ⊢ (Id‘𝐷) = (Id‘𝐷) | |
7 | eqid 2738 | . . . 4 ⊢ (Id‘𝐸) = (Id‘𝐸) | |
8 | eqid 2738 | . . . 4 ⊢ (comp‘𝐷) = (comp‘𝐷) | |
9 | eqid 2738 | . . . 4 ⊢ (comp‘𝐸) = (comp‘𝐸) | |
10 | df-br 5071 | . . . . . . 7 ⊢ (𝐹(𝐷 Func 𝐸)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) | |
11 | 1, 10 | sylib 217 | . . . . . 6 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) |
12 | funcrcl 17494 | . . . . . 6 ⊢ (〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) | |
13 | 11, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
14 | 13 | simpld 494 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) |
15 | 13 | simprd 495 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ Cat) |
16 | 2, 3, 4, 5, 6, 7, 8, 9, 14, 15 | isfunc 17495 | . . 3 ⊢ (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺 ↔ (𝐹:𝐵⟶𝐶 ∧ 𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))(Hom ‘𝐸)(𝐹‘(2nd ‘𝑧))) ↑m ((Hom ‘𝐷)‘𝑧)) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝐺𝑥)‘((Id‘𝐷)‘𝑥)) = ((Id‘𝐸)‘(𝐹‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉(comp‘𝐸)(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚)))))) |
17 | 1, 16 | mpbid 231 | . 2 ⊢ (𝜑 → (𝐹:𝐵⟶𝐶 ∧ 𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))(Hom ‘𝐸)(𝐹‘(2nd ‘𝑧))) ↑m ((Hom ‘𝐷)‘𝑧)) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝐺𝑥)‘((Id‘𝐷)‘𝑥)) = ((Id‘𝐸)‘(𝐹‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉(comp‘𝐸)(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚))))) |
18 | 17 | simp1d 1140 | 1 ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 〈cop 4564 class class class wbr 5070 × cxp 5578 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 1st c1st 7802 2nd c2nd 7803 ↑m cmap 8573 Xcixp 8643 Basecbs 16840 Hom chom 16899 compcco 16900 Catccat 17290 Idccid 17291 Func cfunc 17485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-ixp 8644 df-func 17489 |
This theorem is referenced by: funcsect 17503 funcinv 17504 funciso 17505 funcoppc 17506 cofu1 17515 cofucl 17519 cofuass 17520 cofulid 17521 cofurid 17522 funcres 17527 funcres2 17529 wunfunc 17530 wunfuncOLD 17531 funcres2c 17533 fullpropd 17552 fthsect 17557 fthinv 17558 fthmon 17559 ffthiso 17561 cofull 17566 cofth 17567 fuccocl 17598 fucidcl 17599 fuclid 17600 fucrid 17601 fucass 17602 fucsect 17606 fucinv 17607 invfuc 17608 fuciso 17609 natpropd 17610 fucpropd 17611 catciso 17742 prfval 17832 prfcl 17836 prf1st 17837 prf2nd 17838 1st2ndprf 17839 evlfcllem 17855 evlfcl 17856 curf1cl 17862 curfcl 17866 uncf1 17870 uncf2 17871 curfuncf 17872 uncfcurf 17873 diag1cl 17876 curf2ndf 17881 yon1cl 17897 oyon1cl 17905 yonedalem3a 17908 yonedalem4c 17911 yonedalem3b 17913 yonedalem3 17914 yonedainv 17915 yonffthlem 17916 yoniso 17919 fullthinc 46215 |
Copyright terms: Public domain | W3C validator |