| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcf1 | Structured version Visualization version GIF version | ||
| Description: The object part of a functor is a function on objects. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| funcf1.b | ⊢ 𝐵 = (Base‘𝐷) |
| funcf1.c | ⊢ 𝐶 = (Base‘𝐸) |
| funcf1.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| Ref | Expression |
|---|---|
| funcf1 | ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcf1.f | . . 3 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
| 2 | funcf1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐷) | |
| 3 | funcf1.c | . . . 4 ⊢ 𝐶 = (Base‘𝐸) | |
| 4 | eqid 2734 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 5 | eqid 2734 | . . . 4 ⊢ (Hom ‘𝐸) = (Hom ‘𝐸) | |
| 6 | eqid 2734 | . . . 4 ⊢ (Id‘𝐷) = (Id‘𝐷) | |
| 7 | eqid 2734 | . . . 4 ⊢ (Id‘𝐸) = (Id‘𝐸) | |
| 8 | eqid 2734 | . . . 4 ⊢ (comp‘𝐷) = (comp‘𝐷) | |
| 9 | eqid 2734 | . . . 4 ⊢ (comp‘𝐸) = (comp‘𝐸) | |
| 10 | df-br 5124 | . . . . . . 7 ⊢ (𝐹(𝐷 Func 𝐸)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) | |
| 11 | 1, 10 | sylib 218 | . . . . . 6 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) |
| 12 | funcrcl 17879 | . . . . . 6 ⊢ (〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) | |
| 13 | 11, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
| 14 | 13 | simpld 494 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 15 | 13 | simprd 495 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ Cat) |
| 16 | 2, 3, 4, 5, 6, 7, 8, 9, 14, 15 | isfunc 17880 | . . 3 ⊢ (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺 ↔ (𝐹:𝐵⟶𝐶 ∧ 𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))(Hom ‘𝐸)(𝐹‘(2nd ‘𝑧))) ↑m ((Hom ‘𝐷)‘𝑧)) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝐺𝑥)‘((Id‘𝐷)‘𝑥)) = ((Id‘𝐸)‘(𝐹‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉(comp‘𝐸)(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚)))))) |
| 17 | 1, 16 | mpbid 232 | . 2 ⊢ (𝜑 → (𝐹:𝐵⟶𝐶 ∧ 𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))(Hom ‘𝐸)(𝐹‘(2nd ‘𝑧))) ↑m ((Hom ‘𝐷)‘𝑧)) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝐺𝑥)‘((Id‘𝐷)‘𝑥)) = ((Id‘𝐸)‘(𝐹‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉(comp‘𝐸)(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚))))) |
| 18 | 17 | simp1d 1142 | 1 ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∀wral 3050 〈cop 4612 class class class wbr 5123 × cxp 5663 ⟶wf 6537 ‘cfv 6541 (class class class)co 7413 1st c1st 7994 2nd c2nd 7995 ↑m cmap 8848 Xcixp 8919 Basecbs 17229 Hom chom 17284 compcco 17285 Catccat 17678 Idccid 17679 Func cfunc 17870 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-map 8850 df-ixp 8920 df-func 17874 |
| This theorem is referenced by: funcsect 17888 funcinv 17889 funciso 17890 funcoppc 17891 cofu1 17900 cofucl 17904 cofuass 17905 cofulid 17906 cofurid 17907 funcres 17912 funcres2 17914 wunfunc 17917 funcres2c 17919 fullpropd 17938 fthsect 17943 fthinv 17944 fthmon 17945 ffthiso 17947 cofull 17952 cofth 17953 fuccocl 17983 fucidcl 17984 fuclid 17985 fucrid 17986 fucass 17987 fucsect 17991 fucinv 17992 invfuc 17993 fuciso 17994 natpropd 17995 fucpropd 17996 catciso 18127 prfval 18214 prfcl 18218 prf1st 18219 prf2nd 18220 1st2ndprf 18221 evlfcllem 18236 evlfcl 18237 curf1cl 18243 curfcl 18247 uncf1 18251 uncf2 18252 curfuncf 18253 uncfcurf 18254 diag1cl 18257 curf2ndf 18262 yon1cl 18278 oyon1cl 18286 yonedalem3a 18289 yonedalem4c 18292 yonedalem3b 18294 yonedalem3 18295 yonedainv 18296 yonffthlem 18297 yoniso 18300 func0g 48891 upciclem2 48895 upciclem3 48896 upeu2 48900 oppcup 48919 diag1 48975 diag1f1 48978 fuco111x 49002 fuco11idx 49006 fuco22natlem1 49013 fuco22natlem2 49014 fuco22natlem3 49015 fuco22natlem 49016 fucoid 49019 fuco23alem 49022 fucocolem1 49024 fucocolem2 49025 fucocolem3 49026 fucocolem4 49027 fucoco 49028 fucolid 49032 fucorid 49033 fucorid2 49034 precofvallem 49037 precofvalALT 49039 precofval2 49040 functhincfun 49076 fullthinc 49077 thincciso2 49082 functermc 49121 fulltermc 49124 termcfuncval 49143 |
| Copyright terms: Public domain | W3C validator |