| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcf1 | Structured version Visualization version GIF version | ||
| Description: The object part of a functor is a function on objects. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| funcf1.b | ⊢ 𝐵 = (Base‘𝐷) |
| funcf1.c | ⊢ 𝐶 = (Base‘𝐸) |
| funcf1.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| Ref | Expression |
|---|---|
| funcf1 | ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcf1.f | . . 3 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
| 2 | funcf1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐷) | |
| 3 | funcf1.c | . . . 4 ⊢ 𝐶 = (Base‘𝐸) | |
| 4 | eqid 2730 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 5 | eqid 2730 | . . . 4 ⊢ (Hom ‘𝐸) = (Hom ‘𝐸) | |
| 6 | eqid 2730 | . . . 4 ⊢ (Id‘𝐷) = (Id‘𝐷) | |
| 7 | eqid 2730 | . . . 4 ⊢ (Id‘𝐸) = (Id‘𝐸) | |
| 8 | eqid 2730 | . . . 4 ⊢ (comp‘𝐷) = (comp‘𝐷) | |
| 9 | eqid 2730 | . . . 4 ⊢ (comp‘𝐸) = (comp‘𝐸) | |
| 10 | df-br 5111 | . . . . . . 7 ⊢ (𝐹(𝐷 Func 𝐸)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) | |
| 11 | 1, 10 | sylib 218 | . . . . . 6 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) |
| 12 | funcrcl 17832 | . . . . . 6 ⊢ (〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) | |
| 13 | 11, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
| 14 | 13 | simpld 494 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 15 | 13 | simprd 495 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ Cat) |
| 16 | 2, 3, 4, 5, 6, 7, 8, 9, 14, 15 | isfunc 17833 | . . 3 ⊢ (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺 ↔ (𝐹:𝐵⟶𝐶 ∧ 𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))(Hom ‘𝐸)(𝐹‘(2nd ‘𝑧))) ↑m ((Hom ‘𝐷)‘𝑧)) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝐺𝑥)‘((Id‘𝐷)‘𝑥)) = ((Id‘𝐸)‘(𝐹‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉(comp‘𝐸)(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚)))))) |
| 17 | 1, 16 | mpbid 232 | . 2 ⊢ (𝜑 → (𝐹:𝐵⟶𝐶 ∧ 𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))(Hom ‘𝐸)(𝐹‘(2nd ‘𝑧))) ↑m ((Hom ‘𝐷)‘𝑧)) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝐺𝑥)‘((Id‘𝐷)‘𝑥)) = ((Id‘𝐸)‘(𝐹‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉(comp‘𝐸)(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚))))) |
| 18 | 17 | simp1d 1142 | 1 ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 〈cop 4598 class class class wbr 5110 × cxp 5639 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 1st c1st 7969 2nd c2nd 7970 ↑m cmap 8802 Xcixp 8873 Basecbs 17186 Hom chom 17238 compcco 17239 Catccat 17632 Idccid 17633 Func cfunc 17823 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-map 8804 df-ixp 8874 df-func 17827 |
| This theorem is referenced by: funcsect 17841 funcinv 17842 funciso 17843 funcoppc 17844 cofu1 17853 cofucl 17857 cofuass 17858 cofulid 17859 cofurid 17860 funcres 17865 funcres2 17867 wunfunc 17870 funcres2c 17872 fullpropd 17891 fthsect 17896 fthinv 17897 fthmon 17898 ffthiso 17900 cofull 17905 cofth 17906 fuccocl 17936 fucidcl 17937 fuclid 17938 fucrid 17939 fucass 17940 fucsect 17944 fucinv 17945 invfuc 17946 fuciso 17947 natpropd 17948 fucpropd 17949 catciso 18080 prfval 18167 prfcl 18171 prf1st 18172 prf2nd 18173 1st2ndprf 18174 evlfcllem 18189 evlfcl 18190 curf1cl 18196 curfcl 18200 uncf1 18204 uncf2 18205 curfuncf 18206 uncfcurf 18207 diag1cl 18210 curf2ndf 18215 yon1cl 18231 oyon1cl 18239 yonedalem3a 18242 yonedalem4c 18245 yonedalem3b 18247 yonedalem3 18248 yonedainv 18249 yonffthlem 18250 yoniso 18253 func0g 49082 funchomf 49090 cofidf2a 49110 cofidf1a 49111 cofidf1 49114 imasubc 49144 imassc 49146 imaid 49147 imasubc3 49149 upciclem2 49160 upciclem3 49161 upeu2 49165 uppropd 49174 oppcup 49200 uptrlem1 49203 uptrlem3 49205 uptrar 49209 natoppf 49222 diag1 49297 diag1f1 49300 fuco111x 49324 fuco11idx 49328 fuco22natlem1 49335 fuco22natlem2 49336 fuco22natlem3 49337 fuco22natlem 49338 fucoid 49341 fuco23alem 49344 fucocolem1 49346 fucocolem2 49347 fucocolem3 49348 fucocolem4 49349 fucoco 49350 fucolid 49354 fucorid 49355 fucorid2 49356 precofvallem 49359 precofvalALT 49361 precofval2 49362 prcof22a 49385 prcofdiag1 49386 prcofdiag 49387 fucoppcco 49402 oppfdiag1 49407 oppfdiag 49409 functhincfun 49442 fullthinc 49443 thincciso2 49448 functermc 49501 fulltermc 49504 termcfuncval 49525 funcsn 49534 uobeqterm 49539 concom 49656 coccom 49657 |
| Copyright terms: Public domain | W3C validator |