![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcf1 | Structured version Visualization version GIF version |
Description: The object part of a functor is a function on objects. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
funcf1.b | ⊢ 𝐵 = (Base‘𝐷) |
funcf1.c | ⊢ 𝐶 = (Base‘𝐸) |
funcf1.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
Ref | Expression |
---|---|
funcf1 | ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcf1.f | . . 3 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
2 | funcf1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐷) | |
3 | funcf1.c | . . . 4 ⊢ 𝐶 = (Base‘𝐸) | |
4 | eqid 2730 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
5 | eqid 2730 | . . . 4 ⊢ (Hom ‘𝐸) = (Hom ‘𝐸) | |
6 | eqid 2730 | . . . 4 ⊢ (Id‘𝐷) = (Id‘𝐷) | |
7 | eqid 2730 | . . . 4 ⊢ (Id‘𝐸) = (Id‘𝐸) | |
8 | eqid 2730 | . . . 4 ⊢ (comp‘𝐷) = (comp‘𝐷) | |
9 | eqid 2730 | . . . 4 ⊢ (comp‘𝐸) = (comp‘𝐸) | |
10 | df-br 5150 | . . . . . . 7 ⊢ (𝐹(𝐷 Func 𝐸)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸)) | |
11 | 1, 10 | sylib 217 | . . . . . 6 ⊢ (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸)) |
12 | funcrcl 17819 | . . . . . 6 ⊢ (⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) | |
13 | 11, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
14 | 13 | simpld 493 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) |
15 | 13 | simprd 494 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ Cat) |
16 | 2, 3, 4, 5, 6, 7, 8, 9, 14, 15 | isfunc 17820 | . . 3 ⊢ (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺 ↔ (𝐹:𝐵⟶𝐶 ∧ 𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))(Hom ‘𝐸)(𝐹‘(2nd ‘𝑧))) ↑m ((Hom ‘𝐷)‘𝑧)) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝐺𝑥)‘((Id‘𝐷)‘𝑥)) = ((Id‘𝐸)‘(𝐹‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹‘𝑥), (𝐹‘𝑦)⟩(comp‘𝐸)(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚)))))) |
17 | 1, 16 | mpbid 231 | . 2 ⊢ (𝜑 → (𝐹:𝐵⟶𝐶 ∧ 𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))(Hom ‘𝐸)(𝐹‘(2nd ‘𝑧))) ↑m ((Hom ‘𝐷)‘𝑧)) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝐺𝑥)‘((Id‘𝐷)‘𝑥)) = ((Id‘𝐸)‘(𝐹‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹‘𝑥), (𝐹‘𝑦)⟩(comp‘𝐸)(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚))))) |
18 | 17 | simp1d 1140 | 1 ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1085 = wceq 1539 ∈ wcel 2104 ∀wral 3059 ⟨cop 4635 class class class wbr 5149 × cxp 5675 ⟶wf 6540 ‘cfv 6544 (class class class)co 7413 1st c1st 7977 2nd c2nd 7978 ↑m cmap 8824 Xcixp 8895 Basecbs 17150 Hom chom 17214 compcco 17215 Catccat 17614 Idccid 17615 Func cfunc 17810 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-ov 7416 df-oprab 7417 df-mpo 7418 df-map 8826 df-ixp 8896 df-func 17814 |
This theorem is referenced by: funcsect 17828 funcinv 17829 funciso 17830 funcoppc 17831 cofu1 17840 cofucl 17844 cofuass 17845 cofulid 17846 cofurid 17847 funcres 17852 funcres2 17854 wunfunc 17855 wunfuncOLD 17856 funcres2c 17858 fullpropd 17877 fthsect 17882 fthinv 17883 fthmon 17884 ffthiso 17886 cofull 17891 cofth 17892 fuccocl 17923 fucidcl 17924 fuclid 17925 fucrid 17926 fucass 17927 fucsect 17931 fucinv 17932 invfuc 17933 fuciso 17934 natpropd 17935 fucpropd 17936 catciso 18067 prfval 18157 prfcl 18161 prf1st 18162 prf2nd 18163 1st2ndprf 18164 evlfcllem 18180 evlfcl 18181 curf1cl 18187 curfcl 18191 uncf1 18195 uncf2 18196 curfuncf 18197 uncfcurf 18198 diag1cl 18201 curf2ndf 18206 yon1cl 18222 oyon1cl 18230 yonedalem3a 18233 yonedalem4c 18236 yonedalem3b 18238 yonedalem3 18239 yonedainv 18240 yonffthlem 18241 yoniso 18244 fullthinc 47755 |
Copyright terms: Public domain | W3C validator |