| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcf1 | Structured version Visualization version GIF version | ||
| Description: The object part of a functor is a function on objects. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| funcf1.b | ⊢ 𝐵 = (Base‘𝐷) |
| funcf1.c | ⊢ 𝐶 = (Base‘𝐸) |
| funcf1.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| Ref | Expression |
|---|---|
| funcf1 | ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcf1.f | . . 3 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
| 2 | funcf1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐷) | |
| 3 | funcf1.c | . . . 4 ⊢ 𝐶 = (Base‘𝐸) | |
| 4 | eqid 2729 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 5 | eqid 2729 | . . . 4 ⊢ (Hom ‘𝐸) = (Hom ‘𝐸) | |
| 6 | eqid 2729 | . . . 4 ⊢ (Id‘𝐷) = (Id‘𝐷) | |
| 7 | eqid 2729 | . . . 4 ⊢ (Id‘𝐸) = (Id‘𝐸) | |
| 8 | eqid 2729 | . . . 4 ⊢ (comp‘𝐷) = (comp‘𝐷) | |
| 9 | eqid 2729 | . . . 4 ⊢ (comp‘𝐸) = (comp‘𝐸) | |
| 10 | df-br 5108 | . . . . . . 7 ⊢ (𝐹(𝐷 Func 𝐸)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) | |
| 11 | 1, 10 | sylib 218 | . . . . . 6 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) |
| 12 | funcrcl 17825 | . . . . . 6 ⊢ (〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) | |
| 13 | 11, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
| 14 | 13 | simpld 494 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 15 | 13 | simprd 495 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ Cat) |
| 16 | 2, 3, 4, 5, 6, 7, 8, 9, 14, 15 | isfunc 17826 | . . 3 ⊢ (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺 ↔ (𝐹:𝐵⟶𝐶 ∧ 𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))(Hom ‘𝐸)(𝐹‘(2nd ‘𝑧))) ↑m ((Hom ‘𝐷)‘𝑧)) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝐺𝑥)‘((Id‘𝐷)‘𝑥)) = ((Id‘𝐸)‘(𝐹‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉(comp‘𝐸)(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚)))))) |
| 17 | 1, 16 | mpbid 232 | . 2 ⊢ (𝜑 → (𝐹:𝐵⟶𝐶 ∧ 𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))(Hom ‘𝐸)(𝐹‘(2nd ‘𝑧))) ↑m ((Hom ‘𝐷)‘𝑧)) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝐺𝑥)‘((Id‘𝐷)‘𝑥)) = ((Id‘𝐸)‘(𝐹‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉(comp‘𝐸)(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚))))) |
| 18 | 17 | simp1d 1142 | 1 ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 〈cop 4595 class class class wbr 5107 × cxp 5636 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 1st c1st 7966 2nd c2nd 7967 ↑m cmap 8799 Xcixp 8870 Basecbs 17179 Hom chom 17231 compcco 17232 Catccat 17625 Idccid 17626 Func cfunc 17816 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-ixp 8871 df-func 17820 |
| This theorem is referenced by: funcsect 17834 funcinv 17835 funciso 17836 funcoppc 17837 cofu1 17846 cofucl 17850 cofuass 17851 cofulid 17852 cofurid 17853 funcres 17858 funcres2 17860 wunfunc 17863 funcres2c 17865 fullpropd 17884 fthsect 17889 fthinv 17890 fthmon 17891 ffthiso 17893 cofull 17898 cofth 17899 fuccocl 17929 fucidcl 17930 fuclid 17931 fucrid 17932 fucass 17933 fucsect 17937 fucinv 17938 invfuc 17939 fuciso 17940 natpropd 17941 fucpropd 17942 catciso 18073 prfval 18160 prfcl 18164 prf1st 18165 prf2nd 18166 1st2ndprf 18167 evlfcllem 18182 evlfcl 18183 curf1cl 18189 curfcl 18193 uncf1 18197 uncf2 18198 curfuncf 18199 uncfcurf 18200 diag1cl 18203 curf2ndf 18208 yon1cl 18224 oyon1cl 18232 yonedalem3a 18235 yonedalem4c 18238 yonedalem3b 18240 yonedalem3 18241 yonedainv 18242 yonffthlem 18243 yoniso 18246 func0g 49078 funchomf 49086 cofidf2a 49106 cofidf1a 49107 cofidf1 49110 imasubc 49140 imassc 49142 imaid 49143 imasubc3 49145 upciclem2 49156 upciclem3 49157 upeu2 49161 uppropd 49170 oppcup 49196 uptrlem1 49199 uptrlem3 49201 uptrar 49205 natoppf 49218 diag1 49293 diag1f1 49296 fuco111x 49320 fuco11idx 49324 fuco22natlem1 49331 fuco22natlem2 49332 fuco22natlem3 49333 fuco22natlem 49334 fucoid 49337 fuco23alem 49340 fucocolem1 49342 fucocolem2 49343 fucocolem3 49344 fucocolem4 49345 fucoco 49346 fucolid 49350 fucorid 49351 fucorid2 49352 precofvallem 49355 precofvalALT 49357 precofval2 49358 prcof22a 49381 prcofdiag1 49382 prcofdiag 49383 fucoppcco 49398 oppfdiag1 49403 oppfdiag 49405 functhincfun 49438 fullthinc 49439 thincciso2 49444 functermc 49497 fulltermc 49500 termcfuncval 49521 funcsn 49530 uobeqterm 49535 concom 49652 coccom 49653 |
| Copyright terms: Public domain | W3C validator |