Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funcf1 | Structured version Visualization version GIF version |
Description: The object part of a functor is a function on objects. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
funcf1.b | ⊢ 𝐵 = (Base‘𝐷) |
funcf1.c | ⊢ 𝐶 = (Base‘𝐸) |
funcf1.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
Ref | Expression |
---|---|
funcf1 | ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcf1.f | . . 3 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
2 | funcf1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐷) | |
3 | funcf1.c | . . . 4 ⊢ 𝐶 = (Base‘𝐸) | |
4 | eqid 2738 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
5 | eqid 2738 | . . . 4 ⊢ (Hom ‘𝐸) = (Hom ‘𝐸) | |
6 | eqid 2738 | . . . 4 ⊢ (Id‘𝐷) = (Id‘𝐷) | |
7 | eqid 2738 | . . . 4 ⊢ (Id‘𝐸) = (Id‘𝐸) | |
8 | eqid 2738 | . . . 4 ⊢ (comp‘𝐷) = (comp‘𝐷) | |
9 | eqid 2738 | . . . 4 ⊢ (comp‘𝐸) = (comp‘𝐸) | |
10 | df-br 5075 | . . . . . . 7 ⊢ (𝐹(𝐷 Func 𝐸)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) | |
11 | 1, 10 | sylib 217 | . . . . . 6 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) |
12 | funcrcl 17578 | . . . . . 6 ⊢ (〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) | |
13 | 11, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
14 | 13 | simpld 495 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) |
15 | 13 | simprd 496 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ Cat) |
16 | 2, 3, 4, 5, 6, 7, 8, 9, 14, 15 | isfunc 17579 | . . 3 ⊢ (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺 ↔ (𝐹:𝐵⟶𝐶 ∧ 𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))(Hom ‘𝐸)(𝐹‘(2nd ‘𝑧))) ↑m ((Hom ‘𝐷)‘𝑧)) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝐺𝑥)‘((Id‘𝐷)‘𝑥)) = ((Id‘𝐸)‘(𝐹‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉(comp‘𝐸)(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚)))))) |
17 | 1, 16 | mpbid 231 | . 2 ⊢ (𝜑 → (𝐹:𝐵⟶𝐶 ∧ 𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))(Hom ‘𝐸)(𝐹‘(2nd ‘𝑧))) ↑m ((Hom ‘𝐷)‘𝑧)) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝐺𝑥)‘((Id‘𝐷)‘𝑥)) = ((Id‘𝐸)‘(𝐹‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉(comp‘𝐸)(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚))))) |
18 | 17 | simp1d 1141 | 1 ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 〈cop 4567 class class class wbr 5074 × cxp 5587 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 1st c1st 7829 2nd c2nd 7830 ↑m cmap 8615 Xcixp 8685 Basecbs 16912 Hom chom 16973 compcco 16974 Catccat 17373 Idccid 17374 Func cfunc 17569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-ixp 8686 df-func 17573 |
This theorem is referenced by: funcsect 17587 funcinv 17588 funciso 17589 funcoppc 17590 cofu1 17599 cofucl 17603 cofuass 17604 cofulid 17605 cofurid 17606 funcres 17611 funcres2 17613 wunfunc 17614 wunfuncOLD 17615 funcres2c 17617 fullpropd 17636 fthsect 17641 fthinv 17642 fthmon 17643 ffthiso 17645 cofull 17650 cofth 17651 fuccocl 17682 fucidcl 17683 fuclid 17684 fucrid 17685 fucass 17686 fucsect 17690 fucinv 17691 invfuc 17692 fuciso 17693 natpropd 17694 fucpropd 17695 catciso 17826 prfval 17916 prfcl 17920 prf1st 17921 prf2nd 17922 1st2ndprf 17923 evlfcllem 17939 evlfcl 17940 curf1cl 17946 curfcl 17950 uncf1 17954 uncf2 17955 curfuncf 17956 uncfcurf 17957 diag1cl 17960 curf2ndf 17965 yon1cl 17981 oyon1cl 17989 yonedalem3a 17992 yonedalem4c 17995 yonedalem3b 17997 yonedalem3 17998 yonedainv 17999 yonffthlem 18000 yoniso 18003 fullthinc 46327 |
Copyright terms: Public domain | W3C validator |