| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcf1 | Structured version Visualization version GIF version | ||
| Description: The object part of a functor is a function on objects. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| funcf1.b | ⊢ 𝐵 = (Base‘𝐷) |
| funcf1.c | ⊢ 𝐶 = (Base‘𝐸) |
| funcf1.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| Ref | Expression |
|---|---|
| funcf1 | ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcf1.f | . . 3 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
| 2 | funcf1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐷) | |
| 3 | funcf1.c | . . . 4 ⊢ 𝐶 = (Base‘𝐸) | |
| 4 | eqid 2735 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 5 | eqid 2735 | . . . 4 ⊢ (Hom ‘𝐸) = (Hom ‘𝐸) | |
| 6 | eqid 2735 | . . . 4 ⊢ (Id‘𝐷) = (Id‘𝐷) | |
| 7 | eqid 2735 | . . . 4 ⊢ (Id‘𝐸) = (Id‘𝐸) | |
| 8 | eqid 2735 | . . . 4 ⊢ (comp‘𝐷) = (comp‘𝐷) | |
| 9 | eqid 2735 | . . . 4 ⊢ (comp‘𝐸) = (comp‘𝐸) | |
| 10 | df-br 5120 | . . . . . . 7 ⊢ (𝐹(𝐷 Func 𝐸)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) | |
| 11 | 1, 10 | sylib 218 | . . . . . 6 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) |
| 12 | funcrcl 17876 | . . . . . 6 ⊢ (〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) | |
| 13 | 11, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
| 14 | 13 | simpld 494 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 15 | 13 | simprd 495 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ Cat) |
| 16 | 2, 3, 4, 5, 6, 7, 8, 9, 14, 15 | isfunc 17877 | . . 3 ⊢ (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺 ↔ (𝐹:𝐵⟶𝐶 ∧ 𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))(Hom ‘𝐸)(𝐹‘(2nd ‘𝑧))) ↑m ((Hom ‘𝐷)‘𝑧)) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝐺𝑥)‘((Id‘𝐷)‘𝑥)) = ((Id‘𝐸)‘(𝐹‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉(comp‘𝐸)(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚)))))) |
| 17 | 1, 16 | mpbid 232 | . 2 ⊢ (𝜑 → (𝐹:𝐵⟶𝐶 ∧ 𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))(Hom ‘𝐸)(𝐹‘(2nd ‘𝑧))) ↑m ((Hom ‘𝐷)‘𝑧)) ∧ ∀𝑥 ∈ 𝐵 (((𝑥𝐺𝑥)‘((Id‘𝐷)‘𝑥)) = ((Id‘𝐸)‘(𝐹‘𝑥)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑚 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑥𝐺𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉(comp‘𝐸)(𝐹‘𝑧))((𝑥𝐺𝑦)‘𝑚))))) |
| 18 | 17 | simp1d 1142 | 1 ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∀wral 3051 〈cop 4607 class class class wbr 5119 × cxp 5652 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 1st c1st 7986 2nd c2nd 7987 ↑m cmap 8840 Xcixp 8911 Basecbs 17228 Hom chom 17282 compcco 17283 Catccat 17676 Idccid 17677 Func cfunc 17867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-map 8842 df-ixp 8912 df-func 17871 |
| This theorem is referenced by: funcsect 17885 funcinv 17886 funciso 17887 funcoppc 17888 cofu1 17897 cofucl 17901 cofuass 17902 cofulid 17903 cofurid 17904 funcres 17909 funcres2 17911 wunfunc 17914 funcres2c 17916 fullpropd 17935 fthsect 17940 fthinv 17941 fthmon 17942 ffthiso 17944 cofull 17949 cofth 17950 fuccocl 17980 fucidcl 17981 fuclid 17982 fucrid 17983 fucass 17984 fucsect 17988 fucinv 17989 invfuc 17990 fuciso 17991 natpropd 17992 fucpropd 17993 catciso 18124 prfval 18211 prfcl 18215 prf1st 18216 prf2nd 18217 1st2ndprf 18218 evlfcllem 18233 evlfcl 18234 curf1cl 18240 curfcl 18244 uncf1 18248 uncf2 18249 curfuncf 18250 uncfcurf 18251 diag1cl 18254 curf2ndf 18259 yon1cl 18275 oyon1cl 18283 yonedalem3a 18286 yonedalem4c 18289 yonedalem3b 18291 yonedalem3 18292 yonedainv 18293 yonffthlem 18294 yoniso 18297 func0g 49054 funchomf 49057 imasubc 49091 imassc 49093 imaid 49094 imasubc3 49096 upciclem2 49102 upciclem3 49103 upeu2 49107 oppcup 49140 diag1 49215 diag1f1 49218 fuco111x 49242 fuco11idx 49246 fuco22natlem1 49253 fuco22natlem2 49254 fuco22natlem3 49255 fuco22natlem 49256 fucoid 49259 fuco23alem 49262 fucocolem1 49264 fucocolem2 49265 fucocolem3 49266 fucocolem4 49267 fucoco 49268 fucolid 49272 fucorid 49273 fucorid2 49274 precofvallem 49277 precofvalALT 49279 precofval2 49280 prcof22a 49302 functhincfun 49335 fullthinc 49336 thincciso2 49341 functermc 49393 fulltermc 49396 termcfuncval 49417 concom 49533 coccom 49534 |
| Copyright terms: Public domain | W3C validator |