MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcf1 Structured version   Visualization version   GIF version

Theorem funcf1 17828
Description: The object part of a functor is a function on objects. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
funcf1.b 𝐵 = (Base‘𝐷)
funcf1.c 𝐶 = (Base‘𝐸)
funcf1.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
Assertion
Ref Expression
funcf1 (𝜑𝐹:𝐵𝐶)

Proof of Theorem funcf1
Dummy variables 𝑚 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcf1.f . . 3 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
2 funcf1.b . . . 4 𝐵 = (Base‘𝐷)
3 funcf1.c . . . 4 𝐶 = (Base‘𝐸)
4 eqid 2729 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
5 eqid 2729 . . . 4 (Hom ‘𝐸) = (Hom ‘𝐸)
6 eqid 2729 . . . 4 (Id‘𝐷) = (Id‘𝐷)
7 eqid 2729 . . . 4 (Id‘𝐸) = (Id‘𝐸)
8 eqid 2729 . . . 4 (comp‘𝐷) = (comp‘𝐷)
9 eqid 2729 . . . 4 (comp‘𝐸) = (comp‘𝐸)
10 df-br 5108 . . . . . . 7 (𝐹(𝐷 Func 𝐸)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
111, 10sylib 218 . . . . . 6 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
12 funcrcl 17825 . . . . . 6 (⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat))
1311, 12syl 17 . . . . 5 (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat))
1413simpld 494 . . . 4 (𝜑𝐷 ∈ Cat)
1513simprd 495 . . . 4 (𝜑𝐸 ∈ Cat)
162, 3, 4, 5, 6, 7, 8, 9, 14, 15isfunc 17826 . . 3 (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺 ↔ (𝐹:𝐵𝐶𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))(Hom ‘𝐸)(𝐹‘(2nd𝑧))) ↑m ((Hom ‘𝐷)‘𝑧)) ∧ ∀𝑥𝐵 (((𝑥𝐺𝑥)‘((Id‘𝐷)‘𝑥)) = ((Id‘𝐸)‘(𝐹𝑥)) ∧ ∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐸)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚))))))
171, 16mpbid 232 . 2 (𝜑 → (𝐹:𝐵𝐶𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))(Hom ‘𝐸)(𝐹‘(2nd𝑧))) ↑m ((Hom ‘𝐷)‘𝑧)) ∧ ∀𝑥𝐵 (((𝑥𝐺𝑥)‘((Id‘𝐷)‘𝑥)) = ((Id‘𝐸)‘(𝐹𝑥)) ∧ ∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐸)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚)))))
1817simp1d 1142 1 (𝜑𝐹:𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cop 4595   class class class wbr 5107   × cxp 5636  wf 6507  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  m cmap 8799  Xcixp 8870  Basecbs 17179  Hom chom 17231  compcco 17232  Catccat 17625  Idccid 17626   Func cfunc 17816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-ixp 8871  df-func 17820
This theorem is referenced by:  funcsect  17834  funcinv  17835  funciso  17836  funcoppc  17837  cofu1  17846  cofucl  17850  cofuass  17851  cofulid  17852  cofurid  17853  funcres  17858  funcres2  17860  wunfunc  17863  funcres2c  17865  fullpropd  17884  fthsect  17889  fthinv  17890  fthmon  17891  ffthiso  17893  cofull  17898  cofth  17899  fuccocl  17929  fucidcl  17930  fuclid  17931  fucrid  17932  fucass  17933  fucsect  17937  fucinv  17938  invfuc  17939  fuciso  17940  natpropd  17941  fucpropd  17942  catciso  18073  prfval  18160  prfcl  18164  prf1st  18165  prf2nd  18166  1st2ndprf  18167  evlfcllem  18182  evlfcl  18183  curf1cl  18189  curfcl  18193  uncf1  18197  uncf2  18198  curfuncf  18199  uncfcurf  18200  diag1cl  18203  curf2ndf  18208  yon1cl  18224  oyon1cl  18232  yonedalem3a  18235  yonedalem4c  18238  yonedalem3b  18240  yonedalem3  18241  yonedainv  18242  yonffthlem  18243  yoniso  18246  func0g  49078  funchomf  49086  cofidf2a  49106  cofidf1a  49107  cofidf1  49110  imasubc  49140  imassc  49142  imaid  49143  imasubc3  49145  upciclem2  49156  upciclem3  49157  upeu2  49161  uppropd  49170  oppcup  49196  uptrlem1  49199  uptrlem3  49201  uptrar  49205  natoppf  49218  diag1  49293  diag1f1  49296  fuco111x  49320  fuco11idx  49324  fuco22natlem1  49331  fuco22natlem2  49332  fuco22natlem3  49333  fuco22natlem  49334  fucoid  49337  fuco23alem  49340  fucocolem1  49342  fucocolem2  49343  fucocolem3  49344  fucocolem4  49345  fucoco  49346  fucolid  49350  fucorid  49351  fucorid2  49352  precofvallem  49355  precofvalALT  49357  precofval2  49358  prcof22a  49381  prcofdiag1  49382  prcofdiag  49383  fucoppcco  49398  oppfdiag1  49403  oppfdiag  49405  functhincfun  49438  fullthinc  49439  thincciso2  49444  functermc  49497  fulltermc  49500  termcfuncval  49521  funcsn  49530  uobeqterm  49535  concom  49652  coccom  49653
  Copyright terms: Public domain W3C validator