Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  func0g2 Structured version   Visualization version   GIF version

Theorem func0g2 49022
Description: The source cateogry of a functor to the empty category must be empty as well. (Contributed by Zhi Wang, 19-Oct-2025.)
Hypotheses
Ref Expression
func0g.a 𝐴 = (Base‘𝐶)
func0g.b 𝐵 = (Base‘𝐷)
func0g.d (𝜑𝐵 = ∅)
func0g2.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
Assertion
Ref Expression
func0g2 (𝜑𝐴 = ∅)

Proof of Theorem func0g2
StepHypRef Expression
1 func0g.a . 2 𝐴 = (Base‘𝐶)
2 func0g.b . 2 𝐵 = (Base‘𝐷)
3 func0g.d . 2 (𝜑𝐵 = ∅)
4 func0g2.f . . 3 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
54func1st2nd 49010 . 2 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
61, 2, 3, 5func0g 49021 1 (𝜑𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  c0 4313  cfv 6536  (class class class)co 7410  1st c1st 7991  2nd c2nd 7992  Basecbs 17233   Func cfunc 17872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-map 8847  df-ixp 8917  df-func 17876
This theorem is referenced by:  eufunc  49374
  Copyright terms: Public domain W3C validator