Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  func0g2 Structured version   Visualization version   GIF version

Theorem func0g2 49063
Description: The source category of a functor to the empty category must be empty as well. (Contributed by Zhi Wang, 19-Oct-2025.)
Hypotheses
Ref Expression
func0g.a 𝐴 = (Base‘𝐶)
func0g.b 𝐵 = (Base‘𝐷)
func0g.d (𝜑𝐵 = ∅)
func0g2.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
Assertion
Ref Expression
func0g2 (𝜑𝐴 = ∅)

Proof of Theorem func0g2
StepHypRef Expression
1 func0g.a . 2 𝐴 = (Base‘𝐶)
2 func0g.b . 2 𝐵 = (Base‘𝐷)
3 func0g.d . 2 (𝜑𝐵 = ∅)
4 func0g2.f . . 3 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
54func1st2nd 49049 . 2 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
61, 2, 3, 5func0g 49062 1 (𝜑𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  c0 4286  cfv 6486  (class class class)co 7353  1st c1st 7929  2nd c2nd 7930  Basecbs 17138   Func cfunc 17779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-map 8762  df-ixp 8832  df-func 17783
This theorem is referenced by:  initc  49064  eufunc  49495
  Copyright terms: Public domain W3C validator