Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  func0g2 Structured version   Visualization version   GIF version

Theorem func0g2 48948
Description: The source cateogry of a functor to the empty category must be empty as well. (Contributed by Zhi Wang, 19-Oct-2025.)
Hypotheses
Ref Expression
func0g.a 𝐴 = (Base‘𝐶)
func0g.b 𝐵 = (Base‘𝐷)
func0g.d (𝜑𝐵 = ∅)
func0g2.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
Assertion
Ref Expression
func0g2 (𝜑𝐴 = ∅)

Proof of Theorem func0g2
StepHypRef Expression
1 func0g.a . 2 𝐴 = (Base‘𝐶)
2 func0g.b . 2 𝐵 = (Base‘𝐷)
3 func0g.d . 2 (𝜑𝐵 = ∅)
4 func0g2.f . . 3 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
54func1st2nd 48936 . 2 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
61, 2, 3, 5func0g 48947 1 (𝜑𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  c0 4306  cfv 6528  (class class class)co 7400  1st c1st 7981  2nd c2nd 7982  Basecbs 17215   Func cfunc 17854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-fv 6536  df-ov 7403  df-oprab 7404  df-mpo 7405  df-1st 7983  df-2nd 7984  df-map 8837  df-ixp 8907  df-func 17858
This theorem is referenced by:  eufunc  49268
  Copyright terms: Public domain W3C validator