MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmima Structured version   Visualization version   GIF version

Theorem lmhmima 20961
Description: The image of a subspace under a homomorphism. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
lmhmima.x 𝑋 = (LSubSp‘𝑆)
lmhmima.y 𝑌 = (LSubSp‘𝑇)
Assertion
Ref Expression
lmhmima ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → (𝐹𝑈) ∈ 𝑌)

Proof of Theorem lmhmima
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmghm 20945 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
2 lmhmlmod1 20947 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
3 simpr 484 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → 𝑈𝑋)
4 lmhmima.x . . . . 5 𝑋 = (LSubSp‘𝑆)
54lsssubg 20870 . . . 4 ((𝑆 ∈ LMod ∧ 𝑈𝑋) → 𝑈 ∈ (SubGrp‘𝑆))
62, 3, 5syl2an2r 685 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → 𝑈 ∈ (SubGrp‘𝑆))
7 ghmima 19176 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (SubGrp‘𝑆)) → (𝐹𝑈) ∈ (SubGrp‘𝑇))
81, 6, 7syl2an2r 685 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → (𝐹𝑈) ∈ (SubGrp‘𝑇))
9 eqid 2730 . . . . . . . . . 10 (Base‘𝑆) = (Base‘𝑆)
10 eqid 2730 . . . . . . . . . 10 (Base‘𝑇) = (Base‘𝑇)
119, 10lmhmf 20948 . . . . . . . . 9 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
1211adantr 480 . . . . . . . 8 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
13 ffn 6691 . . . . . . . 8 (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → 𝐹 Fn (Base‘𝑆))
1412, 13syl 17 . . . . . . 7 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → 𝐹 Fn (Base‘𝑆))
159, 4lssss 20849 . . . . . . . 8 (𝑈𝑋𝑈 ⊆ (Base‘𝑆))
163, 15syl 17 . . . . . . 7 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → 𝑈 ⊆ (Base‘𝑆))
1714, 16fvelimabd 6937 . . . . . 6 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → (𝑏 ∈ (𝐹𝑈) ↔ ∃𝑐𝑈 (𝐹𝑐) = 𝑏))
1817adantr 480 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑇))) → (𝑏 ∈ (𝐹𝑈) ↔ ∃𝑐𝑈 (𝐹𝑐) = 𝑏))
19 simpll 766 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → 𝐹 ∈ (𝑆 LMHom 𝑇))
20 eqid 2730 . . . . . . . . . . . . . . . 16 (Scalar‘𝑆) = (Scalar‘𝑆)
21 eqid 2730 . . . . . . . . . . . . . . . 16 (Scalar‘𝑇) = (Scalar‘𝑇)
2220, 21lmhmsca 20944 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = (Scalar‘𝑆))
2322adantr 480 . . . . . . . . . . . . . 14 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → (Scalar‘𝑇) = (Scalar‘𝑆))
2423fveq2d 6865 . . . . . . . . . . . . 13 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑆)))
2524eleq2d 2815 . . . . . . . . . . . 12 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → (𝑎 ∈ (Base‘(Scalar‘𝑇)) ↔ 𝑎 ∈ (Base‘(Scalar‘𝑆))))
2625biimpa 476 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑇))) → 𝑎 ∈ (Base‘(Scalar‘𝑆)))
2726adantrr 717 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → 𝑎 ∈ (Base‘(Scalar‘𝑆)))
2816sselda 3949 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ 𝑐𝑈) → 𝑐 ∈ (Base‘𝑆))
2928adantrl 716 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → 𝑐 ∈ (Base‘𝑆))
30 eqid 2730 . . . . . . . . . . 11 (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆))
31 eqid 2730 . . . . . . . . . . 11 ( ·𝑠𝑆) = ( ·𝑠𝑆)
32 eqid 2730 . . . . . . . . . . 11 ( ·𝑠𝑇) = ( ·𝑠𝑇)
3320, 30, 9, 31, 32lmhmlin 20949 . . . . . . . . . 10 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑐 ∈ (Base‘𝑆)) → (𝐹‘(𝑎( ·𝑠𝑆)𝑐)) = (𝑎( ·𝑠𝑇)(𝐹𝑐)))
3419, 27, 29, 33syl3anc 1373 . . . . . . . . 9 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → (𝐹‘(𝑎( ·𝑠𝑆)𝑐)) = (𝑎( ·𝑠𝑇)(𝐹𝑐)))
3519, 11, 133syl 18 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → 𝐹 Fn (Base‘𝑆))
36 simplr 768 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → 𝑈𝑋)
3736, 15syl 17 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → 𝑈 ⊆ (Base‘𝑆))
382adantr 480 . . . . . . . . . . . 12 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → 𝑆 ∈ LMod)
3938adantr 480 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → 𝑆 ∈ LMod)
40 simprr 772 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → 𝑐𝑈)
4120, 31, 30, 4lssvscl 20868 . . . . . . . . . . 11 (((𝑆 ∈ LMod ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑐𝑈)) → (𝑎( ·𝑠𝑆)𝑐) ∈ 𝑈)
4239, 36, 27, 40, 41syl22anc 838 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → (𝑎( ·𝑠𝑆)𝑐) ∈ 𝑈)
43 fnfvima 7210 . . . . . . . . . 10 ((𝐹 Fn (Base‘𝑆) ∧ 𝑈 ⊆ (Base‘𝑆) ∧ (𝑎( ·𝑠𝑆)𝑐) ∈ 𝑈) → (𝐹‘(𝑎( ·𝑠𝑆)𝑐)) ∈ (𝐹𝑈))
4435, 37, 42, 43syl3anc 1373 . . . . . . . . 9 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → (𝐹‘(𝑎( ·𝑠𝑆)𝑐)) ∈ (𝐹𝑈))
4534, 44eqeltrrd 2830 . . . . . . . 8 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → (𝑎( ·𝑠𝑇)(𝐹𝑐)) ∈ (𝐹𝑈))
4645anassrs 467 . . . . . . 7 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑇))) ∧ 𝑐𝑈) → (𝑎( ·𝑠𝑇)(𝐹𝑐)) ∈ (𝐹𝑈))
47 oveq2 7398 . . . . . . . 8 ((𝐹𝑐) = 𝑏 → (𝑎( ·𝑠𝑇)(𝐹𝑐)) = (𝑎( ·𝑠𝑇)𝑏))
4847eleq1d 2814 . . . . . . 7 ((𝐹𝑐) = 𝑏 → ((𝑎( ·𝑠𝑇)(𝐹𝑐)) ∈ (𝐹𝑈) ↔ (𝑎( ·𝑠𝑇)𝑏) ∈ (𝐹𝑈)))
4946, 48syl5ibcom 245 . . . . . 6 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑇))) ∧ 𝑐𝑈) → ((𝐹𝑐) = 𝑏 → (𝑎( ·𝑠𝑇)𝑏) ∈ (𝐹𝑈)))
5049rexlimdva 3135 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑇))) → (∃𝑐𝑈 (𝐹𝑐) = 𝑏 → (𝑎( ·𝑠𝑇)𝑏) ∈ (𝐹𝑈)))
5118, 50sylbid 240 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑇))) → (𝑏 ∈ (𝐹𝑈) → (𝑎( ·𝑠𝑇)𝑏) ∈ (𝐹𝑈)))
5251impr 454 . . 3 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑏 ∈ (𝐹𝑈))) → (𝑎( ·𝑠𝑇)𝑏) ∈ (𝐹𝑈))
5352ralrimivva 3181 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → ∀𝑎 ∈ (Base‘(Scalar‘𝑇))∀𝑏 ∈ (𝐹𝑈)(𝑎( ·𝑠𝑇)𝑏) ∈ (𝐹𝑈))
54 lmhmlmod2 20946 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
5554adantr 480 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → 𝑇 ∈ LMod)
56 eqid 2730 . . . 4 (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇))
57 lmhmima.y . . . 4 𝑌 = (LSubSp‘𝑇)
5821, 56, 10, 32, 57islss4 20875 . . 3 (𝑇 ∈ LMod → ((𝐹𝑈) ∈ 𝑌 ↔ ((𝐹𝑈) ∈ (SubGrp‘𝑇) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑇))∀𝑏 ∈ (𝐹𝑈)(𝑎( ·𝑠𝑇)𝑏) ∈ (𝐹𝑈))))
5955, 58syl 17 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → ((𝐹𝑈) ∈ 𝑌 ↔ ((𝐹𝑈) ∈ (SubGrp‘𝑇) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑇))∀𝑏 ∈ (𝐹𝑈)(𝑎( ·𝑠𝑇)𝑏) ∈ (𝐹𝑈))))
608, 53, 59mpbir2and 713 1 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → (𝐹𝑈) ∈ 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  wss 3917  cima 5644   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  Basecbs 17186  Scalarcsca 17230   ·𝑠 cvsca 17231  SubGrpcsubg 19059   GrpHom cghm 19151  LModclmod 20773  LSubSpclss 20844   LMHom clmhm 20933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-ghm 19152  df-mgp 20057  df-ur 20098  df-ring 20151  df-lmod 20775  df-lss 20845  df-lmhm 20936
This theorem is referenced by:  lmhmlsp  20963  lmhmrnlss  20964
  Copyright terms: Public domain W3C validator