Step | Hyp | Ref
| Expression |
1 | | lmghm 20208 |
. . 3
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
2 | | lmhmlmod1 20210 |
. . . 4
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod) |
3 | | simpr 484 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑋) → 𝑈 ∈ 𝑋) |
4 | | lmhmima.x |
. . . . 5
⊢ 𝑋 = (LSubSp‘𝑆) |
5 | 4 | lsssubg 20134 |
. . . 4
⊢ ((𝑆 ∈ LMod ∧ 𝑈 ∈ 𝑋) → 𝑈 ∈ (SubGrp‘𝑆)) |
6 | 2, 3, 5 | syl2an2r 681 |
. . 3
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑋) → 𝑈 ∈ (SubGrp‘𝑆)) |
7 | | ghmima 18770 |
. . 3
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (SubGrp‘𝑆)) → (𝐹 “ 𝑈) ∈ (SubGrp‘𝑇)) |
8 | 1, 6, 7 | syl2an2r 681 |
. 2
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑋) → (𝐹 “ 𝑈) ∈ (SubGrp‘𝑇)) |
9 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘𝑆) =
(Base‘𝑆) |
10 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘𝑇) =
(Base‘𝑇) |
11 | 9, 10 | lmhmf 20211 |
. . . . . . . . 9
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
12 | 11 | adantr 480 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑋) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
13 | | ffn 6584 |
. . . . . . . 8
⊢ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → 𝐹 Fn (Base‘𝑆)) |
14 | 12, 13 | syl 17 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑋) → 𝐹 Fn (Base‘𝑆)) |
15 | 9, 4 | lssss 20113 |
. . . . . . . 8
⊢ (𝑈 ∈ 𝑋 → 𝑈 ⊆ (Base‘𝑆)) |
16 | 3, 15 | syl 17 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑋) → 𝑈 ⊆ (Base‘𝑆)) |
17 | 14, 16 | fvelimabd 6824 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑋) → (𝑏 ∈ (𝐹 “ 𝑈) ↔ ∃𝑐 ∈ 𝑈 (𝐹‘𝑐) = 𝑏)) |
18 | 17 | adantr 480 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑋) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑇))) → (𝑏 ∈ (𝐹 “ 𝑈) ↔ ∃𝑐 ∈ 𝑈 (𝐹‘𝑐) = 𝑏)) |
19 | | simpll 763 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐 ∈ 𝑈)) → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
20 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢
(Scalar‘𝑆) =
(Scalar‘𝑆) |
21 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢
(Scalar‘𝑇) =
(Scalar‘𝑇) |
22 | 20, 21 | lmhmsca 20207 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = (Scalar‘𝑆)) |
23 | 22 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑋) → (Scalar‘𝑇) = (Scalar‘𝑆)) |
24 | 23 | fveq2d 6760 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑋) → (Base‘(Scalar‘𝑇)) =
(Base‘(Scalar‘𝑆))) |
25 | 24 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑋) → (𝑎 ∈ (Base‘(Scalar‘𝑇)) ↔ 𝑎 ∈ (Base‘(Scalar‘𝑆)))) |
26 | 25 | biimpa 476 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑋) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑇))) → 𝑎 ∈ (Base‘(Scalar‘𝑆))) |
27 | 26 | adantrr 713 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐 ∈ 𝑈)) → 𝑎 ∈ (Base‘(Scalar‘𝑆))) |
28 | 16 | sselda 3917 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑋) ∧ 𝑐 ∈ 𝑈) → 𝑐 ∈ (Base‘𝑆)) |
29 | 28 | adantrl 712 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐 ∈ 𝑈)) → 𝑐 ∈ (Base‘𝑆)) |
30 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆)) |
31 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (
·𝑠 ‘𝑆) = ( ·𝑠
‘𝑆) |
32 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (
·𝑠 ‘𝑇) = ( ·𝑠
‘𝑇) |
33 | 20, 30, 9, 31, 32 | lmhmlin 20212 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑐 ∈ (Base‘𝑆)) → (𝐹‘(𝑎( ·𝑠
‘𝑆)𝑐)) = (𝑎( ·𝑠
‘𝑇)(𝐹‘𝑐))) |
34 | 19, 27, 29, 33 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐 ∈ 𝑈)) → (𝐹‘(𝑎( ·𝑠
‘𝑆)𝑐)) = (𝑎( ·𝑠
‘𝑇)(𝐹‘𝑐))) |
35 | 19, 11, 13 | 3syl 18 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐 ∈ 𝑈)) → 𝐹 Fn (Base‘𝑆)) |
36 | | simplr 765 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐 ∈ 𝑈)) → 𝑈 ∈ 𝑋) |
37 | 36, 15 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐 ∈ 𝑈)) → 𝑈 ⊆ (Base‘𝑆)) |
38 | 2 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑋) → 𝑆 ∈ LMod) |
39 | 38 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐 ∈ 𝑈)) → 𝑆 ∈ LMod) |
40 | | simprr 769 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐 ∈ 𝑈)) → 𝑐 ∈ 𝑈) |
41 | 20, 31, 30, 4 | lssvscl 20132 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ LMod ∧ 𝑈 ∈ 𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑐 ∈ 𝑈)) → (𝑎( ·𝑠
‘𝑆)𝑐) ∈ 𝑈) |
42 | 39, 36, 27, 40, 41 | syl22anc 835 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐 ∈ 𝑈)) → (𝑎( ·𝑠
‘𝑆)𝑐) ∈ 𝑈) |
43 | | fnfvima 7091 |
. . . . . . . . . 10
⊢ ((𝐹 Fn (Base‘𝑆) ∧ 𝑈 ⊆ (Base‘𝑆) ∧ (𝑎( ·𝑠
‘𝑆)𝑐) ∈ 𝑈) → (𝐹‘(𝑎( ·𝑠
‘𝑆)𝑐)) ∈ (𝐹 “ 𝑈)) |
44 | 35, 37, 42, 43 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐 ∈ 𝑈)) → (𝐹‘(𝑎( ·𝑠
‘𝑆)𝑐)) ∈ (𝐹 “ 𝑈)) |
45 | 34, 44 | eqeltrrd 2840 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐 ∈ 𝑈)) → (𝑎( ·𝑠
‘𝑇)(𝐹‘𝑐)) ∈ (𝐹 “ 𝑈)) |
46 | 45 | anassrs 467 |
. . . . . . 7
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑋) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑇))) ∧ 𝑐 ∈ 𝑈) → (𝑎( ·𝑠
‘𝑇)(𝐹‘𝑐)) ∈ (𝐹 “ 𝑈)) |
47 | | oveq2 7263 |
. . . . . . . 8
⊢ ((𝐹‘𝑐) = 𝑏 → (𝑎( ·𝑠
‘𝑇)(𝐹‘𝑐)) = (𝑎( ·𝑠
‘𝑇)𝑏)) |
48 | 47 | eleq1d 2823 |
. . . . . . 7
⊢ ((𝐹‘𝑐) = 𝑏 → ((𝑎( ·𝑠
‘𝑇)(𝐹‘𝑐)) ∈ (𝐹 “ 𝑈) ↔ (𝑎( ·𝑠
‘𝑇)𝑏) ∈ (𝐹 “ 𝑈))) |
49 | 46, 48 | syl5ibcom 244 |
. . . . . 6
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑋) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑇))) ∧ 𝑐 ∈ 𝑈) → ((𝐹‘𝑐) = 𝑏 → (𝑎( ·𝑠
‘𝑇)𝑏) ∈ (𝐹 “ 𝑈))) |
50 | 49 | rexlimdva 3212 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑋) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑇))) → (∃𝑐 ∈ 𝑈 (𝐹‘𝑐) = 𝑏 → (𝑎( ·𝑠
‘𝑇)𝑏) ∈ (𝐹 “ 𝑈))) |
51 | 18, 50 | sylbid 239 |
. . . 4
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑋) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑇))) → (𝑏 ∈ (𝐹 “ 𝑈) → (𝑎( ·𝑠
‘𝑇)𝑏) ∈ (𝐹 “ 𝑈))) |
52 | 51 | impr 454 |
. . 3
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑏 ∈ (𝐹 “ 𝑈))) → (𝑎( ·𝑠
‘𝑇)𝑏) ∈ (𝐹 “ 𝑈)) |
53 | 52 | ralrimivva 3114 |
. 2
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑋) → ∀𝑎 ∈ (Base‘(Scalar‘𝑇))∀𝑏 ∈ (𝐹 “ 𝑈)(𝑎( ·𝑠
‘𝑇)𝑏) ∈ (𝐹 “ 𝑈)) |
54 | | lmhmlmod2 20209 |
. . . 4
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod) |
55 | 54 | adantr 480 |
. . 3
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑋) → 𝑇 ∈ LMod) |
56 | | eqid 2738 |
. . . 4
⊢
(Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇)) |
57 | | lmhmima.y |
. . . 4
⊢ 𝑌 = (LSubSp‘𝑇) |
58 | 21, 56, 10, 32, 57 | islss4 20139 |
. . 3
⊢ (𝑇 ∈ LMod → ((𝐹 “ 𝑈) ∈ 𝑌 ↔ ((𝐹 “ 𝑈) ∈ (SubGrp‘𝑇) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑇))∀𝑏 ∈ (𝐹 “ 𝑈)(𝑎( ·𝑠
‘𝑇)𝑏) ∈ (𝐹 “ 𝑈)))) |
59 | 55, 58 | syl 17 |
. 2
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑋) → ((𝐹 “ 𝑈) ∈ 𝑌 ↔ ((𝐹 “ 𝑈) ∈ (SubGrp‘𝑇) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑇))∀𝑏 ∈ (𝐹 “ 𝑈)(𝑎( ·𝑠
‘𝑇)𝑏) ∈ (𝐹 “ 𝑈)))) |
60 | 8, 53, 59 | mpbir2and 709 |
1
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ∈ 𝑋) → (𝐹 “ 𝑈) ∈ 𝑌) |