MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmima Structured version   Visualization version   GIF version

Theorem lmhmima 21005
Description: The image of a subspace under a homomorphism. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
lmhmima.x 𝑋 = (LSubSp‘𝑆)
lmhmima.y 𝑌 = (LSubSp‘𝑇)
Assertion
Ref Expression
lmhmima ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → (𝐹𝑈) ∈ 𝑌)

Proof of Theorem lmhmima
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmghm 20989 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
2 lmhmlmod1 20991 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
3 simpr 484 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → 𝑈𝑋)
4 lmhmima.x . . . . 5 𝑋 = (LSubSp‘𝑆)
54lsssubg 20914 . . . 4 ((𝑆 ∈ LMod ∧ 𝑈𝑋) → 𝑈 ∈ (SubGrp‘𝑆))
62, 3, 5syl2an2r 685 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → 𝑈 ∈ (SubGrp‘𝑆))
7 ghmima 19220 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (SubGrp‘𝑆)) → (𝐹𝑈) ∈ (SubGrp‘𝑇))
81, 6, 7syl2an2r 685 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → (𝐹𝑈) ∈ (SubGrp‘𝑇))
9 eqid 2735 . . . . . . . . . 10 (Base‘𝑆) = (Base‘𝑆)
10 eqid 2735 . . . . . . . . . 10 (Base‘𝑇) = (Base‘𝑇)
119, 10lmhmf 20992 . . . . . . . . 9 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
1211adantr 480 . . . . . . . 8 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
13 ffn 6706 . . . . . . . 8 (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → 𝐹 Fn (Base‘𝑆))
1412, 13syl 17 . . . . . . 7 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → 𝐹 Fn (Base‘𝑆))
159, 4lssss 20893 . . . . . . . 8 (𝑈𝑋𝑈 ⊆ (Base‘𝑆))
163, 15syl 17 . . . . . . 7 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → 𝑈 ⊆ (Base‘𝑆))
1714, 16fvelimabd 6952 . . . . . 6 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → (𝑏 ∈ (𝐹𝑈) ↔ ∃𝑐𝑈 (𝐹𝑐) = 𝑏))
1817adantr 480 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑇))) → (𝑏 ∈ (𝐹𝑈) ↔ ∃𝑐𝑈 (𝐹𝑐) = 𝑏))
19 simpll 766 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → 𝐹 ∈ (𝑆 LMHom 𝑇))
20 eqid 2735 . . . . . . . . . . . . . . . 16 (Scalar‘𝑆) = (Scalar‘𝑆)
21 eqid 2735 . . . . . . . . . . . . . . . 16 (Scalar‘𝑇) = (Scalar‘𝑇)
2220, 21lmhmsca 20988 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = (Scalar‘𝑆))
2322adantr 480 . . . . . . . . . . . . . 14 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → (Scalar‘𝑇) = (Scalar‘𝑆))
2423fveq2d 6880 . . . . . . . . . . . . 13 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑆)))
2524eleq2d 2820 . . . . . . . . . . . 12 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → (𝑎 ∈ (Base‘(Scalar‘𝑇)) ↔ 𝑎 ∈ (Base‘(Scalar‘𝑆))))
2625biimpa 476 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑇))) → 𝑎 ∈ (Base‘(Scalar‘𝑆)))
2726adantrr 717 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → 𝑎 ∈ (Base‘(Scalar‘𝑆)))
2816sselda 3958 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ 𝑐𝑈) → 𝑐 ∈ (Base‘𝑆))
2928adantrl 716 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → 𝑐 ∈ (Base‘𝑆))
30 eqid 2735 . . . . . . . . . . 11 (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆))
31 eqid 2735 . . . . . . . . . . 11 ( ·𝑠𝑆) = ( ·𝑠𝑆)
32 eqid 2735 . . . . . . . . . . 11 ( ·𝑠𝑇) = ( ·𝑠𝑇)
3320, 30, 9, 31, 32lmhmlin 20993 . . . . . . . . . 10 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑐 ∈ (Base‘𝑆)) → (𝐹‘(𝑎( ·𝑠𝑆)𝑐)) = (𝑎( ·𝑠𝑇)(𝐹𝑐)))
3419, 27, 29, 33syl3anc 1373 . . . . . . . . 9 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → (𝐹‘(𝑎( ·𝑠𝑆)𝑐)) = (𝑎( ·𝑠𝑇)(𝐹𝑐)))
3519, 11, 133syl 18 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → 𝐹 Fn (Base‘𝑆))
36 simplr 768 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → 𝑈𝑋)
3736, 15syl 17 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → 𝑈 ⊆ (Base‘𝑆))
382adantr 480 . . . . . . . . . . . 12 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → 𝑆 ∈ LMod)
3938adantr 480 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → 𝑆 ∈ LMod)
40 simprr 772 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → 𝑐𝑈)
4120, 31, 30, 4lssvscl 20912 . . . . . . . . . . 11 (((𝑆 ∈ LMod ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑐𝑈)) → (𝑎( ·𝑠𝑆)𝑐) ∈ 𝑈)
4239, 36, 27, 40, 41syl22anc 838 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → (𝑎( ·𝑠𝑆)𝑐) ∈ 𝑈)
43 fnfvima 7225 . . . . . . . . . 10 ((𝐹 Fn (Base‘𝑆) ∧ 𝑈 ⊆ (Base‘𝑆) ∧ (𝑎( ·𝑠𝑆)𝑐) ∈ 𝑈) → (𝐹‘(𝑎( ·𝑠𝑆)𝑐)) ∈ (𝐹𝑈))
4435, 37, 42, 43syl3anc 1373 . . . . . . . . 9 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → (𝐹‘(𝑎( ·𝑠𝑆)𝑐)) ∈ (𝐹𝑈))
4534, 44eqeltrrd 2835 . . . . . . . 8 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → (𝑎( ·𝑠𝑇)(𝐹𝑐)) ∈ (𝐹𝑈))
4645anassrs 467 . . . . . . 7 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑇))) ∧ 𝑐𝑈) → (𝑎( ·𝑠𝑇)(𝐹𝑐)) ∈ (𝐹𝑈))
47 oveq2 7413 . . . . . . . 8 ((𝐹𝑐) = 𝑏 → (𝑎( ·𝑠𝑇)(𝐹𝑐)) = (𝑎( ·𝑠𝑇)𝑏))
4847eleq1d 2819 . . . . . . 7 ((𝐹𝑐) = 𝑏 → ((𝑎( ·𝑠𝑇)(𝐹𝑐)) ∈ (𝐹𝑈) ↔ (𝑎( ·𝑠𝑇)𝑏) ∈ (𝐹𝑈)))
4946, 48syl5ibcom 245 . . . . . 6 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑇))) ∧ 𝑐𝑈) → ((𝐹𝑐) = 𝑏 → (𝑎( ·𝑠𝑇)𝑏) ∈ (𝐹𝑈)))
5049rexlimdva 3141 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑇))) → (∃𝑐𝑈 (𝐹𝑐) = 𝑏 → (𝑎( ·𝑠𝑇)𝑏) ∈ (𝐹𝑈)))
5118, 50sylbid 240 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑇))) → (𝑏 ∈ (𝐹𝑈) → (𝑎( ·𝑠𝑇)𝑏) ∈ (𝐹𝑈)))
5251impr 454 . . 3 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑏 ∈ (𝐹𝑈))) → (𝑎( ·𝑠𝑇)𝑏) ∈ (𝐹𝑈))
5352ralrimivva 3187 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → ∀𝑎 ∈ (Base‘(Scalar‘𝑇))∀𝑏 ∈ (𝐹𝑈)(𝑎( ·𝑠𝑇)𝑏) ∈ (𝐹𝑈))
54 lmhmlmod2 20990 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
5554adantr 480 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → 𝑇 ∈ LMod)
56 eqid 2735 . . . 4 (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇))
57 lmhmima.y . . . 4 𝑌 = (LSubSp‘𝑇)
5821, 56, 10, 32, 57islss4 20919 . . 3 (𝑇 ∈ LMod → ((𝐹𝑈) ∈ 𝑌 ↔ ((𝐹𝑈) ∈ (SubGrp‘𝑇) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑇))∀𝑏 ∈ (𝐹𝑈)(𝑎( ·𝑠𝑇)𝑏) ∈ (𝐹𝑈))))
5955, 58syl 17 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → ((𝐹𝑈) ∈ 𝑌 ↔ ((𝐹𝑈) ∈ (SubGrp‘𝑇) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑇))∀𝑏 ∈ (𝐹𝑈)(𝑎( ·𝑠𝑇)𝑏) ∈ (𝐹𝑈))))
608, 53, 59mpbir2and 713 1 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → (𝐹𝑈) ∈ 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  wss 3926  cima 5657   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  Basecbs 17228  Scalarcsca 17274   ·𝑠 cvsca 17275  SubGrpcsubg 19103   GrpHom cghm 19195  LModclmod 20817  LSubSpclss 20888   LMHom clmhm 20977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-sbg 18921  df-subg 19106  df-ghm 19196  df-mgp 20101  df-ur 20142  df-ring 20195  df-lmod 20819  df-lss 20889  df-lmhm 20980
This theorem is referenced by:  lmhmlsp  21007  lmhmrnlss  21008
  Copyright terms: Public domain W3C validator