MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmima Structured version   Visualization version   GIF version

Theorem lmhmima 20974
Description: The image of a subspace under a homomorphism. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
lmhmima.x 𝑋 = (LSubSp‘𝑆)
lmhmima.y 𝑌 = (LSubSp‘𝑇)
Assertion
Ref Expression
lmhmima ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → (𝐹𝑈) ∈ 𝑌)

Proof of Theorem lmhmima
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmghm 20958 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
2 lmhmlmod1 20960 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
3 simpr 484 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → 𝑈𝑋)
4 lmhmima.x . . . . 5 𝑋 = (LSubSp‘𝑆)
54lsssubg 20883 . . . 4 ((𝑆 ∈ LMod ∧ 𝑈𝑋) → 𝑈 ∈ (SubGrp‘𝑆))
62, 3, 5syl2an2r 685 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → 𝑈 ∈ (SubGrp‘𝑆))
7 ghmima 19142 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (SubGrp‘𝑆)) → (𝐹𝑈) ∈ (SubGrp‘𝑇))
81, 6, 7syl2an2r 685 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → (𝐹𝑈) ∈ (SubGrp‘𝑇))
9 eqid 2730 . . . . . . . . . 10 (Base‘𝑆) = (Base‘𝑆)
10 eqid 2730 . . . . . . . . . 10 (Base‘𝑇) = (Base‘𝑇)
119, 10lmhmf 20961 . . . . . . . . 9 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
1211adantr 480 . . . . . . . 8 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
13 ffn 6647 . . . . . . . 8 (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → 𝐹 Fn (Base‘𝑆))
1412, 13syl 17 . . . . . . 7 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → 𝐹 Fn (Base‘𝑆))
159, 4lssss 20862 . . . . . . . 8 (𝑈𝑋𝑈 ⊆ (Base‘𝑆))
163, 15syl 17 . . . . . . 7 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → 𝑈 ⊆ (Base‘𝑆))
1714, 16fvelimabd 6890 . . . . . 6 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → (𝑏 ∈ (𝐹𝑈) ↔ ∃𝑐𝑈 (𝐹𝑐) = 𝑏))
1817adantr 480 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑇))) → (𝑏 ∈ (𝐹𝑈) ↔ ∃𝑐𝑈 (𝐹𝑐) = 𝑏))
19 simpll 766 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → 𝐹 ∈ (𝑆 LMHom 𝑇))
20 eqid 2730 . . . . . . . . . . . . . . . 16 (Scalar‘𝑆) = (Scalar‘𝑆)
21 eqid 2730 . . . . . . . . . . . . . . . 16 (Scalar‘𝑇) = (Scalar‘𝑇)
2220, 21lmhmsca 20957 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = (Scalar‘𝑆))
2322adantr 480 . . . . . . . . . . . . . 14 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → (Scalar‘𝑇) = (Scalar‘𝑆))
2423fveq2d 6821 . . . . . . . . . . . . 13 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑆)))
2524eleq2d 2815 . . . . . . . . . . . 12 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → (𝑎 ∈ (Base‘(Scalar‘𝑇)) ↔ 𝑎 ∈ (Base‘(Scalar‘𝑆))))
2625biimpa 476 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑇))) → 𝑎 ∈ (Base‘(Scalar‘𝑆)))
2726adantrr 717 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → 𝑎 ∈ (Base‘(Scalar‘𝑆)))
2816sselda 3932 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ 𝑐𝑈) → 𝑐 ∈ (Base‘𝑆))
2928adantrl 716 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → 𝑐 ∈ (Base‘𝑆))
30 eqid 2730 . . . . . . . . . . 11 (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆))
31 eqid 2730 . . . . . . . . . . 11 ( ·𝑠𝑆) = ( ·𝑠𝑆)
32 eqid 2730 . . . . . . . . . . 11 ( ·𝑠𝑇) = ( ·𝑠𝑇)
3320, 30, 9, 31, 32lmhmlin 20962 . . . . . . . . . 10 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑐 ∈ (Base‘𝑆)) → (𝐹‘(𝑎( ·𝑠𝑆)𝑐)) = (𝑎( ·𝑠𝑇)(𝐹𝑐)))
3419, 27, 29, 33syl3anc 1373 . . . . . . . . 9 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → (𝐹‘(𝑎( ·𝑠𝑆)𝑐)) = (𝑎( ·𝑠𝑇)(𝐹𝑐)))
3519, 11, 133syl 18 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → 𝐹 Fn (Base‘𝑆))
36 simplr 768 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → 𝑈𝑋)
3736, 15syl 17 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → 𝑈 ⊆ (Base‘𝑆))
382adantr 480 . . . . . . . . . . . 12 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → 𝑆 ∈ LMod)
3938adantr 480 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → 𝑆 ∈ LMod)
40 simprr 772 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → 𝑐𝑈)
4120, 31, 30, 4lssvscl 20881 . . . . . . . . . . 11 (((𝑆 ∈ LMod ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑐𝑈)) → (𝑎( ·𝑠𝑆)𝑐) ∈ 𝑈)
4239, 36, 27, 40, 41syl22anc 838 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → (𝑎( ·𝑠𝑆)𝑐) ∈ 𝑈)
43 fnfvima 7162 . . . . . . . . . 10 ((𝐹 Fn (Base‘𝑆) ∧ 𝑈 ⊆ (Base‘𝑆) ∧ (𝑎( ·𝑠𝑆)𝑐) ∈ 𝑈) → (𝐹‘(𝑎( ·𝑠𝑆)𝑐)) ∈ (𝐹𝑈))
4435, 37, 42, 43syl3anc 1373 . . . . . . . . 9 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → (𝐹‘(𝑎( ·𝑠𝑆)𝑐)) ∈ (𝐹𝑈))
4534, 44eqeltrrd 2830 . . . . . . . 8 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → (𝑎( ·𝑠𝑇)(𝐹𝑐)) ∈ (𝐹𝑈))
4645anassrs 467 . . . . . . 7 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑇))) ∧ 𝑐𝑈) → (𝑎( ·𝑠𝑇)(𝐹𝑐)) ∈ (𝐹𝑈))
47 oveq2 7349 . . . . . . . 8 ((𝐹𝑐) = 𝑏 → (𝑎( ·𝑠𝑇)(𝐹𝑐)) = (𝑎( ·𝑠𝑇)𝑏))
4847eleq1d 2814 . . . . . . 7 ((𝐹𝑐) = 𝑏 → ((𝑎( ·𝑠𝑇)(𝐹𝑐)) ∈ (𝐹𝑈) ↔ (𝑎( ·𝑠𝑇)𝑏) ∈ (𝐹𝑈)))
4946, 48syl5ibcom 245 . . . . . 6 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑇))) ∧ 𝑐𝑈) → ((𝐹𝑐) = 𝑏 → (𝑎( ·𝑠𝑇)𝑏) ∈ (𝐹𝑈)))
5049rexlimdva 3131 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑇))) → (∃𝑐𝑈 (𝐹𝑐) = 𝑏 → (𝑎( ·𝑠𝑇)𝑏) ∈ (𝐹𝑈)))
5118, 50sylbid 240 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑇))) → (𝑏 ∈ (𝐹𝑈) → (𝑎( ·𝑠𝑇)𝑏) ∈ (𝐹𝑈)))
5251impr 454 . . 3 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑏 ∈ (𝐹𝑈))) → (𝑎( ·𝑠𝑇)𝑏) ∈ (𝐹𝑈))
5352ralrimivva 3173 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → ∀𝑎 ∈ (Base‘(Scalar‘𝑇))∀𝑏 ∈ (𝐹𝑈)(𝑎( ·𝑠𝑇)𝑏) ∈ (𝐹𝑈))
54 lmhmlmod2 20959 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
5554adantr 480 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → 𝑇 ∈ LMod)
56 eqid 2730 . . . 4 (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇))
57 lmhmima.y . . . 4 𝑌 = (LSubSp‘𝑇)
5821, 56, 10, 32, 57islss4 20888 . . 3 (𝑇 ∈ LMod → ((𝐹𝑈) ∈ 𝑌 ↔ ((𝐹𝑈) ∈ (SubGrp‘𝑇) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑇))∀𝑏 ∈ (𝐹𝑈)(𝑎( ·𝑠𝑇)𝑏) ∈ (𝐹𝑈))))
5955, 58syl 17 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → ((𝐹𝑈) ∈ 𝑌 ↔ ((𝐹𝑈) ∈ (SubGrp‘𝑇) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑇))∀𝑏 ∈ (𝐹𝑈)(𝑎( ·𝑠𝑇)𝑏) ∈ (𝐹𝑈))))
608, 53, 59mpbir2and 713 1 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → (𝐹𝑈) ∈ 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  wral 3045  wrex 3054  wss 3900  cima 5617   Fn wfn 6472  wf 6473  cfv 6477  (class class class)co 7341  Basecbs 17112  Scalarcsca 17156   ·𝑠 cvsca 17157  SubGrpcsubg 19025   GrpHom cghm 19117  LModclmod 20786  LSubSpclss 20857   LMHom clmhm 20946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-0g 17337  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-grp 18841  df-minusg 18842  df-sbg 18843  df-subg 19028  df-ghm 19118  df-mgp 20052  df-ur 20093  df-ring 20146  df-lmod 20788  df-lss 20858  df-lmhm 20949
This theorem is referenced by:  lmhmlsp  20976  lmhmrnlss  20977
  Copyright terms: Public domain W3C validator