MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmima Structured version   Visualization version   GIF version

Theorem lmhmima 21046
Description: The image of a subspace under a homomorphism. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
lmhmima.x 𝑋 = (LSubSp‘𝑆)
lmhmima.y 𝑌 = (LSubSp‘𝑇)
Assertion
Ref Expression
lmhmima ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → (𝐹𝑈) ∈ 𝑌)

Proof of Theorem lmhmima
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmghm 21030 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
2 lmhmlmod1 21032 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
3 simpr 484 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → 𝑈𝑋)
4 lmhmima.x . . . . 5 𝑋 = (LSubSp‘𝑆)
54lsssubg 20955 . . . 4 ((𝑆 ∈ LMod ∧ 𝑈𝑋) → 𝑈 ∈ (SubGrp‘𝑆))
62, 3, 5syl2an2r 685 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → 𝑈 ∈ (SubGrp‘𝑆))
7 ghmima 19255 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (SubGrp‘𝑆)) → (𝐹𝑈) ∈ (SubGrp‘𝑇))
81, 6, 7syl2an2r 685 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → (𝐹𝑈) ∈ (SubGrp‘𝑇))
9 eqid 2737 . . . . . . . . . 10 (Base‘𝑆) = (Base‘𝑆)
10 eqid 2737 . . . . . . . . . 10 (Base‘𝑇) = (Base‘𝑇)
119, 10lmhmf 21033 . . . . . . . . 9 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
1211adantr 480 . . . . . . . 8 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
13 ffn 6736 . . . . . . . 8 (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → 𝐹 Fn (Base‘𝑆))
1412, 13syl 17 . . . . . . 7 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → 𝐹 Fn (Base‘𝑆))
159, 4lssss 20934 . . . . . . . 8 (𝑈𝑋𝑈 ⊆ (Base‘𝑆))
163, 15syl 17 . . . . . . 7 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → 𝑈 ⊆ (Base‘𝑆))
1714, 16fvelimabd 6982 . . . . . 6 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → (𝑏 ∈ (𝐹𝑈) ↔ ∃𝑐𝑈 (𝐹𝑐) = 𝑏))
1817adantr 480 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑇))) → (𝑏 ∈ (𝐹𝑈) ↔ ∃𝑐𝑈 (𝐹𝑐) = 𝑏))
19 simpll 767 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → 𝐹 ∈ (𝑆 LMHom 𝑇))
20 eqid 2737 . . . . . . . . . . . . . . . 16 (Scalar‘𝑆) = (Scalar‘𝑆)
21 eqid 2737 . . . . . . . . . . . . . . . 16 (Scalar‘𝑇) = (Scalar‘𝑇)
2220, 21lmhmsca 21029 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = (Scalar‘𝑆))
2322adantr 480 . . . . . . . . . . . . . 14 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → (Scalar‘𝑇) = (Scalar‘𝑆))
2423fveq2d 6910 . . . . . . . . . . . . 13 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑆)))
2524eleq2d 2827 . . . . . . . . . . . 12 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → (𝑎 ∈ (Base‘(Scalar‘𝑇)) ↔ 𝑎 ∈ (Base‘(Scalar‘𝑆))))
2625biimpa 476 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑇))) → 𝑎 ∈ (Base‘(Scalar‘𝑆)))
2726adantrr 717 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → 𝑎 ∈ (Base‘(Scalar‘𝑆)))
2816sselda 3983 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ 𝑐𝑈) → 𝑐 ∈ (Base‘𝑆))
2928adantrl 716 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → 𝑐 ∈ (Base‘𝑆))
30 eqid 2737 . . . . . . . . . . 11 (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆))
31 eqid 2737 . . . . . . . . . . 11 ( ·𝑠𝑆) = ( ·𝑠𝑆)
32 eqid 2737 . . . . . . . . . . 11 ( ·𝑠𝑇) = ( ·𝑠𝑇)
3320, 30, 9, 31, 32lmhmlin 21034 . . . . . . . . . 10 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑐 ∈ (Base‘𝑆)) → (𝐹‘(𝑎( ·𝑠𝑆)𝑐)) = (𝑎( ·𝑠𝑇)(𝐹𝑐)))
3419, 27, 29, 33syl3anc 1373 . . . . . . . . 9 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → (𝐹‘(𝑎( ·𝑠𝑆)𝑐)) = (𝑎( ·𝑠𝑇)(𝐹𝑐)))
3519, 11, 133syl 18 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → 𝐹 Fn (Base‘𝑆))
36 simplr 769 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → 𝑈𝑋)
3736, 15syl 17 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → 𝑈 ⊆ (Base‘𝑆))
382adantr 480 . . . . . . . . . . . 12 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → 𝑆 ∈ LMod)
3938adantr 480 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → 𝑆 ∈ LMod)
40 simprr 773 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → 𝑐𝑈)
4120, 31, 30, 4lssvscl 20953 . . . . . . . . . . 11 (((𝑆 ∈ LMod ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑐𝑈)) → (𝑎( ·𝑠𝑆)𝑐) ∈ 𝑈)
4239, 36, 27, 40, 41syl22anc 839 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → (𝑎( ·𝑠𝑆)𝑐) ∈ 𝑈)
43 fnfvima 7253 . . . . . . . . . 10 ((𝐹 Fn (Base‘𝑆) ∧ 𝑈 ⊆ (Base‘𝑆) ∧ (𝑎( ·𝑠𝑆)𝑐) ∈ 𝑈) → (𝐹‘(𝑎( ·𝑠𝑆)𝑐)) ∈ (𝐹𝑈))
4435, 37, 42, 43syl3anc 1373 . . . . . . . . 9 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → (𝐹‘(𝑎( ·𝑠𝑆)𝑐)) ∈ (𝐹𝑈))
4534, 44eqeltrrd 2842 . . . . . . . 8 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑐𝑈)) → (𝑎( ·𝑠𝑇)(𝐹𝑐)) ∈ (𝐹𝑈))
4645anassrs 467 . . . . . . 7 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑇))) ∧ 𝑐𝑈) → (𝑎( ·𝑠𝑇)(𝐹𝑐)) ∈ (𝐹𝑈))
47 oveq2 7439 . . . . . . . 8 ((𝐹𝑐) = 𝑏 → (𝑎( ·𝑠𝑇)(𝐹𝑐)) = (𝑎( ·𝑠𝑇)𝑏))
4847eleq1d 2826 . . . . . . 7 ((𝐹𝑐) = 𝑏 → ((𝑎( ·𝑠𝑇)(𝐹𝑐)) ∈ (𝐹𝑈) ↔ (𝑎( ·𝑠𝑇)𝑏) ∈ (𝐹𝑈)))
4946, 48syl5ibcom 245 . . . . . 6 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑇))) ∧ 𝑐𝑈) → ((𝐹𝑐) = 𝑏 → (𝑎( ·𝑠𝑇)𝑏) ∈ (𝐹𝑈)))
5049rexlimdva 3155 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑇))) → (∃𝑐𝑈 (𝐹𝑐) = 𝑏 → (𝑎( ·𝑠𝑇)𝑏) ∈ (𝐹𝑈)))
5118, 50sylbid 240 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑇))) → (𝑏 ∈ (𝐹𝑈) → (𝑎( ·𝑠𝑇)𝑏) ∈ (𝐹𝑈)))
5251impr 454 . . 3 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑏 ∈ (𝐹𝑈))) → (𝑎( ·𝑠𝑇)𝑏) ∈ (𝐹𝑈))
5352ralrimivva 3202 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → ∀𝑎 ∈ (Base‘(Scalar‘𝑇))∀𝑏 ∈ (𝐹𝑈)(𝑎( ·𝑠𝑇)𝑏) ∈ (𝐹𝑈))
54 lmhmlmod2 21031 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
5554adantr 480 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → 𝑇 ∈ LMod)
56 eqid 2737 . . . 4 (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇))
57 lmhmima.y . . . 4 𝑌 = (LSubSp‘𝑇)
5821, 56, 10, 32, 57islss4 20960 . . 3 (𝑇 ∈ LMod → ((𝐹𝑈) ∈ 𝑌 ↔ ((𝐹𝑈) ∈ (SubGrp‘𝑇) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑇))∀𝑏 ∈ (𝐹𝑈)(𝑎( ·𝑠𝑇)𝑏) ∈ (𝐹𝑈))))
5955, 58syl 17 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → ((𝐹𝑈) ∈ 𝑌 ↔ ((𝐹𝑈) ∈ (SubGrp‘𝑇) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑇))∀𝑏 ∈ (𝐹𝑈)(𝑎( ·𝑠𝑇)𝑏) ∈ (𝐹𝑈))))
608, 53, 59mpbir2and 713 1 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑋) → (𝐹𝑈) ∈ 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070  wss 3951  cima 5688   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  Basecbs 17247  Scalarcsca 17300   ·𝑠 cvsca 17301  SubGrpcsubg 19138   GrpHom cghm 19230  LModclmod 20858  LSubSpclss 20929   LMHom clmhm 21018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-ghm 19231  df-mgp 20138  df-ur 20179  df-ring 20232  df-lmod 20860  df-lss 20930  df-lmhm 21021
This theorem is referenced by:  lmhmlsp  21048  lmhmrnlss  21049
  Copyright terms: Public domain W3C validator