![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvmpti | Structured version Visualization version GIF version |
Description: Value of a function given in maps-to notation. (Contributed by Mario Carneiro, 23-Apr-2014.) |
Ref | Expression |
---|---|
fvmptg.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
fvmptg.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
Ref | Expression |
---|---|
fvmpti | ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = ( I ‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptg.1 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
2 | fvmptg.2 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
3 | 1, 2 | fvmptg 7027 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ V) → (𝐹‘𝐴) = 𝐶) |
4 | fvi 6998 | . . . 4 ⊢ (𝐶 ∈ V → ( I ‘𝐶) = 𝐶) | |
5 | 4 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ V) → ( I ‘𝐶) = 𝐶) |
6 | 3, 5 | eqtr4d 2783 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ V) → (𝐹‘𝐴) = ( I ‘𝐶)) |
7 | 1 | eleq1d 2829 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝐵 ∈ V ↔ 𝐶 ∈ V)) |
8 | 2 | dmmpt 6271 | . . . . . . . 8 ⊢ dom 𝐹 = {𝑥 ∈ 𝐷 ∣ 𝐵 ∈ V} |
9 | 7, 8 | elrab2 3711 | . . . . . . 7 ⊢ (𝐴 ∈ dom 𝐹 ↔ (𝐴 ∈ 𝐷 ∧ 𝐶 ∈ V)) |
10 | 9 | baib 535 | . . . . . 6 ⊢ (𝐴 ∈ 𝐷 → (𝐴 ∈ dom 𝐹 ↔ 𝐶 ∈ V)) |
11 | 10 | notbid 318 | . . . . 5 ⊢ (𝐴 ∈ 𝐷 → (¬ 𝐴 ∈ dom 𝐹 ↔ ¬ 𝐶 ∈ V)) |
12 | ndmfv 6955 | . . . . 5 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) | |
13 | 11, 12 | biimtrrdi 254 | . . . 4 ⊢ (𝐴 ∈ 𝐷 → (¬ 𝐶 ∈ V → (𝐹‘𝐴) = ∅)) |
14 | 13 | imp 406 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ ¬ 𝐶 ∈ V) → (𝐹‘𝐴) = ∅) |
15 | fvprc 6912 | . . . 4 ⊢ (¬ 𝐶 ∈ V → ( I ‘𝐶) = ∅) | |
16 | 15 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ ¬ 𝐶 ∈ V) → ( I ‘𝐶) = ∅) |
17 | 14, 16 | eqtr4d 2783 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ ¬ 𝐶 ∈ V) → (𝐹‘𝐴) = ( I ‘𝐶)) |
18 | 6, 17 | pm2.61dan 812 | 1 ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = ( I ‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 ↦ cmpt 5249 I cid 5592 dom cdm 5700 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 |
This theorem is referenced by: fvmpt2i 7039 fvmptex 7043 sumeq2ii 15741 summolem3 15762 fsumf1o 15771 isumshft 15887 prodeq2ii 15959 prodmolem3 15981 fprodf1o 15994 |
Copyright terms: Public domain | W3C validator |