MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmpti Structured version   Visualization version   GIF version

Theorem fvmpti 6424
Description: Value of a function given in maps-to notation. (Contributed by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
fvmptg.1 (𝑥 = 𝐴𝐵 = 𝐶)
fvmptg.2 𝐹 = (𝑥𝐷𝐵)
Assertion
Ref Expression
fvmpti (𝐴𝐷 → (𝐹𝐴) = ( I ‘𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fvmpti
StepHypRef Expression
1 fvmptg.1 . . . 4 (𝑥 = 𝐴𝐵 = 𝐶)
2 fvmptg.2 . . . 4 𝐹 = (𝑥𝐷𝐵)
31, 2fvmptg 6423 . . 3 ((𝐴𝐷𝐶 ∈ V) → (𝐹𝐴) = 𝐶)
4 fvi 6398 . . . 4 (𝐶 ∈ V → ( I ‘𝐶) = 𝐶)
54adantl 467 . . 3 ((𝐴𝐷𝐶 ∈ V) → ( I ‘𝐶) = 𝐶)
63, 5eqtr4d 2808 . 2 ((𝐴𝐷𝐶 ∈ V) → (𝐹𝐴) = ( I ‘𝐶))
71eleq1d 2835 . . . . . . . 8 (𝑥 = 𝐴 → (𝐵 ∈ V ↔ 𝐶 ∈ V))
82dmmpt 5775 . . . . . . . 8 dom 𝐹 = {𝑥𝐷𝐵 ∈ V}
97, 8elrab2 3519 . . . . . . 7 (𝐴 ∈ dom 𝐹 ↔ (𝐴𝐷𝐶 ∈ V))
109baib 519 . . . . . 6 (𝐴𝐷 → (𝐴 ∈ dom 𝐹𝐶 ∈ V))
1110notbid 307 . . . . 5 (𝐴𝐷 → (¬ 𝐴 ∈ dom 𝐹 ↔ ¬ 𝐶 ∈ V))
12 ndmfv 6360 . . . . 5 𝐴 ∈ dom 𝐹 → (𝐹𝐴) = ∅)
1311, 12syl6bir 244 . . . 4 (𝐴𝐷 → (¬ 𝐶 ∈ V → (𝐹𝐴) = ∅))
1413imp 393 . . 3 ((𝐴𝐷 ∧ ¬ 𝐶 ∈ V) → (𝐹𝐴) = ∅)
15 fvprc 6327 . . . 4 𝐶 ∈ V → ( I ‘𝐶) = ∅)
1615adantl 467 . . 3 ((𝐴𝐷 ∧ ¬ 𝐶 ∈ V) → ( I ‘𝐶) = ∅)
1714, 16eqtr4d 2808 . 2 ((𝐴𝐷 ∧ ¬ 𝐶 ∈ V) → (𝐹𝐴) = ( I ‘𝐶))
186, 17pm2.61dan 807 1 (𝐴𝐷 → (𝐹𝐴) = ( I ‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382   = wceq 1631  wcel 2145  Vcvv 3351  c0 4064  cmpt 4864   I cid 5157  dom cdm 5250  cfv 6032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3589  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-nul 4065  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5995  df-fun 6034  df-fv 6040
This theorem is referenced by:  fvmpt2i  6433  fvmptex  6437  sumeq2ii  14632  summolem3  14654  fsumf1o  14663  isumshft  14779  prodeq2ii  14851  prodmolem3  14871  fprodf1o  14884
  Copyright terms: Public domain W3C validator