MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmpti Structured version   Visualization version   GIF version

Theorem fvmpti 6928
Description: Value of a function given in maps-to notation. (Contributed by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
fvmptg.1 (𝑥 = 𝐴𝐵 = 𝐶)
fvmptg.2 𝐹 = (𝑥𝐷𝐵)
Assertion
Ref Expression
fvmpti (𝐴𝐷 → (𝐹𝐴) = ( I ‘𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fvmpti
StepHypRef Expression
1 fvmptg.1 . . . 4 (𝑥 = 𝐴𝐵 = 𝐶)
2 fvmptg.2 . . . 4 𝐹 = (𝑥𝐷𝐵)
31, 2fvmptg 6927 . . 3 ((𝐴𝐷𝐶 ∈ V) → (𝐹𝐴) = 𝐶)
4 fvi 6898 . . . 4 (𝐶 ∈ V → ( I ‘𝐶) = 𝐶)
54adantl 481 . . 3 ((𝐴𝐷𝐶 ∈ V) → ( I ‘𝐶) = 𝐶)
63, 5eqtr4d 2769 . 2 ((𝐴𝐷𝐶 ∈ V) → (𝐹𝐴) = ( I ‘𝐶))
71eleq1d 2816 . . . . . . . 8 (𝑥 = 𝐴 → (𝐵 ∈ V ↔ 𝐶 ∈ V))
82dmmpt 6187 . . . . . . . 8 dom 𝐹 = {𝑥𝐷𝐵 ∈ V}
97, 8elrab2 3650 . . . . . . 7 (𝐴 ∈ dom 𝐹 ↔ (𝐴𝐷𝐶 ∈ V))
109baib 535 . . . . . 6 (𝐴𝐷 → (𝐴 ∈ dom 𝐹𝐶 ∈ V))
1110notbid 318 . . . . 5 (𝐴𝐷 → (¬ 𝐴 ∈ dom 𝐹 ↔ ¬ 𝐶 ∈ V))
12 ndmfv 6854 . . . . 5 𝐴 ∈ dom 𝐹 → (𝐹𝐴) = ∅)
1311, 12biimtrrdi 254 . . . 4 (𝐴𝐷 → (¬ 𝐶 ∈ V → (𝐹𝐴) = ∅))
1413imp 406 . . 3 ((𝐴𝐷 ∧ ¬ 𝐶 ∈ V) → (𝐹𝐴) = ∅)
15 fvprc 6814 . . . 4 𝐶 ∈ V → ( I ‘𝐶) = ∅)
1615adantl 481 . . 3 ((𝐴𝐷 ∧ ¬ 𝐶 ∈ V) → ( I ‘𝐶) = ∅)
1714, 16eqtr4d 2769 . 2 ((𝐴𝐷 ∧ ¬ 𝐶 ∈ V) → (𝐹𝐴) = ( I ‘𝐶))
186, 17pm2.61dan 812 1 (𝐴𝐷 → (𝐹𝐴) = ( I ‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  c0 4283  cmpt 5172   I cid 5510  dom cdm 5616  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fv 6489
This theorem is referenced by:  fvmpt2i  6939  fvmptex  6943  sumeq2ii  15600  summolem3  15621  fsumf1o  15630  isumshft  15746  prodeq2ii  15818  prodmolem3  15840  fprodf1o  15853
  Copyright terms: Public domain W3C validator