MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmpti Structured version   Visualization version   GIF version

Theorem fvmpti 6933
Description: Value of a function given in maps-to notation. (Contributed by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
fvmptg.1 (𝑥 = 𝐴𝐵 = 𝐶)
fvmptg.2 𝐹 = (𝑥𝐷𝐵)
Assertion
Ref Expression
fvmpti (𝐴𝐷 → (𝐹𝐴) = ( I ‘𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fvmpti
StepHypRef Expression
1 fvmptg.1 . . . 4 (𝑥 = 𝐴𝐵 = 𝐶)
2 fvmptg.2 . . . 4 𝐹 = (𝑥𝐷𝐵)
31, 2fvmptg 6932 . . 3 ((𝐴𝐷𝐶 ∈ V) → (𝐹𝐴) = 𝐶)
4 fvi 6903 . . . 4 (𝐶 ∈ V → ( I ‘𝐶) = 𝐶)
54adantl 481 . . 3 ((𝐴𝐷𝐶 ∈ V) → ( I ‘𝐶) = 𝐶)
63, 5eqtr4d 2767 . 2 ((𝐴𝐷𝐶 ∈ V) → (𝐹𝐴) = ( I ‘𝐶))
71eleq1d 2813 . . . . . . . 8 (𝑥 = 𝐴 → (𝐵 ∈ V ↔ 𝐶 ∈ V))
82dmmpt 6193 . . . . . . . 8 dom 𝐹 = {𝑥𝐷𝐵 ∈ V}
97, 8elrab2 3653 . . . . . . 7 (𝐴 ∈ dom 𝐹 ↔ (𝐴𝐷𝐶 ∈ V))
109baib 535 . . . . . 6 (𝐴𝐷 → (𝐴 ∈ dom 𝐹𝐶 ∈ V))
1110notbid 318 . . . . 5 (𝐴𝐷 → (¬ 𝐴 ∈ dom 𝐹 ↔ ¬ 𝐶 ∈ V))
12 ndmfv 6859 . . . . 5 𝐴 ∈ dom 𝐹 → (𝐹𝐴) = ∅)
1311, 12biimtrrdi 254 . . . 4 (𝐴𝐷 → (¬ 𝐶 ∈ V → (𝐹𝐴) = ∅))
1413imp 406 . . 3 ((𝐴𝐷 ∧ ¬ 𝐶 ∈ V) → (𝐹𝐴) = ∅)
15 fvprc 6818 . . . 4 𝐶 ∈ V → ( I ‘𝐶) = ∅)
1615adantl 481 . . 3 ((𝐴𝐷 ∧ ¬ 𝐶 ∈ V) → ( I ‘𝐶) = ∅)
1714, 16eqtr4d 2767 . 2 ((𝐴𝐷 ∧ ¬ 𝐶 ∈ V) → (𝐹𝐴) = ( I ‘𝐶))
186, 17pm2.61dan 812 1 (𝐴𝐷 → (𝐹𝐴) = ( I ‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  c0 4286  cmpt 5176   I cid 5517  dom cdm 5623  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fv 6494
This theorem is referenced by:  fvmpt2i  6944  fvmptex  6948  sumeq2ii  15618  summolem3  15639  fsumf1o  15648  isumshft  15764  prodeq2ii  15836  prodmolem3  15858  fprodf1o  15871
  Copyright terms: Public domain W3C validator