![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvmpti | Structured version Visualization version GIF version |
Description: Value of a function given in maps-to notation. (Contributed by Mario Carneiro, 23-Apr-2014.) |
Ref | Expression |
---|---|
fvmptg.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
fvmptg.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
Ref | Expression |
---|---|
fvmpti | ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = ( I ‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptg.1 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
2 | fvmptg.2 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
3 | 1, 2 | fvmptg 7014 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ V) → (𝐹‘𝐴) = 𝐶) |
4 | fvi 6985 | . . . 4 ⊢ (𝐶 ∈ V → ( I ‘𝐶) = 𝐶) | |
5 | 4 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ V) → ( I ‘𝐶) = 𝐶) |
6 | 3, 5 | eqtr4d 2778 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ V) → (𝐹‘𝐴) = ( I ‘𝐶)) |
7 | 1 | eleq1d 2824 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝐵 ∈ V ↔ 𝐶 ∈ V)) |
8 | 2 | dmmpt 6262 | . . . . . . . 8 ⊢ dom 𝐹 = {𝑥 ∈ 𝐷 ∣ 𝐵 ∈ V} |
9 | 7, 8 | elrab2 3698 | . . . . . . 7 ⊢ (𝐴 ∈ dom 𝐹 ↔ (𝐴 ∈ 𝐷 ∧ 𝐶 ∈ V)) |
10 | 9 | baib 535 | . . . . . 6 ⊢ (𝐴 ∈ 𝐷 → (𝐴 ∈ dom 𝐹 ↔ 𝐶 ∈ V)) |
11 | 10 | notbid 318 | . . . . 5 ⊢ (𝐴 ∈ 𝐷 → (¬ 𝐴 ∈ dom 𝐹 ↔ ¬ 𝐶 ∈ V)) |
12 | ndmfv 6942 | . . . . 5 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) | |
13 | 11, 12 | biimtrrdi 254 | . . . 4 ⊢ (𝐴 ∈ 𝐷 → (¬ 𝐶 ∈ V → (𝐹‘𝐴) = ∅)) |
14 | 13 | imp 406 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ ¬ 𝐶 ∈ V) → (𝐹‘𝐴) = ∅) |
15 | fvprc 6899 | . . . 4 ⊢ (¬ 𝐶 ∈ V → ( I ‘𝐶) = ∅) | |
16 | 15 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ ¬ 𝐶 ∈ V) → ( I ‘𝐶) = ∅) |
17 | 14, 16 | eqtr4d 2778 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ ¬ 𝐶 ∈ V) → (𝐹‘𝐴) = ( I ‘𝐶)) |
18 | 6, 17 | pm2.61dan 813 | 1 ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = ( I ‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∅c0 4339 ↦ cmpt 5231 I cid 5582 dom cdm 5689 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fv 6571 |
This theorem is referenced by: fvmpt2i 7026 fvmptex 7030 sumeq2ii 15726 summolem3 15747 fsumf1o 15756 isumshft 15872 prodeq2ii 15944 prodmolem3 15966 fprodf1o 15979 |
Copyright terms: Public domain | W3C validator |