| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmpti | Structured version Visualization version GIF version | ||
| Description: Value of a function given in maps-to notation. (Contributed by Mario Carneiro, 23-Apr-2014.) |
| Ref | Expression |
|---|---|
| fvmptg.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| fvmptg.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fvmpti | ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = ( I ‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptg.1 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 2 | fvmptg.2 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 3 | 1, 2 | fvmptg 6966 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ V) → (𝐹‘𝐴) = 𝐶) |
| 4 | fvi 6937 | . . . 4 ⊢ (𝐶 ∈ V → ( I ‘𝐶) = 𝐶) | |
| 5 | 4 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ V) → ( I ‘𝐶) = 𝐶) |
| 6 | 3, 5 | eqtr4d 2767 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ V) → (𝐹‘𝐴) = ( I ‘𝐶)) |
| 7 | 1 | eleq1d 2813 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝐵 ∈ V ↔ 𝐶 ∈ V)) |
| 8 | 2 | dmmpt 6213 | . . . . . . . 8 ⊢ dom 𝐹 = {𝑥 ∈ 𝐷 ∣ 𝐵 ∈ V} |
| 9 | 7, 8 | elrab2 3662 | . . . . . . 7 ⊢ (𝐴 ∈ dom 𝐹 ↔ (𝐴 ∈ 𝐷 ∧ 𝐶 ∈ V)) |
| 10 | 9 | baib 535 | . . . . . 6 ⊢ (𝐴 ∈ 𝐷 → (𝐴 ∈ dom 𝐹 ↔ 𝐶 ∈ V)) |
| 11 | 10 | notbid 318 | . . . . 5 ⊢ (𝐴 ∈ 𝐷 → (¬ 𝐴 ∈ dom 𝐹 ↔ ¬ 𝐶 ∈ V)) |
| 12 | ndmfv 6893 | . . . . 5 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) | |
| 13 | 11, 12 | biimtrrdi 254 | . . . 4 ⊢ (𝐴 ∈ 𝐷 → (¬ 𝐶 ∈ V → (𝐹‘𝐴) = ∅)) |
| 14 | 13 | imp 406 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ ¬ 𝐶 ∈ V) → (𝐹‘𝐴) = ∅) |
| 15 | fvprc 6850 | . . . 4 ⊢ (¬ 𝐶 ∈ V → ( I ‘𝐶) = ∅) | |
| 16 | 15 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ ¬ 𝐶 ∈ V) → ( I ‘𝐶) = ∅) |
| 17 | 14, 16 | eqtr4d 2767 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ ¬ 𝐶 ∈ V) → (𝐹‘𝐴) = ( I ‘𝐶)) |
| 18 | 6, 17 | pm2.61dan 812 | 1 ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = ( I ‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 ↦ cmpt 5188 I cid 5532 dom cdm 5638 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fv 6519 |
| This theorem is referenced by: fvmpt2i 6978 fvmptex 6982 sumeq2ii 15659 summolem3 15680 fsumf1o 15689 isumshft 15805 prodeq2ii 15877 prodmolem3 15899 fprodf1o 15912 |
| Copyright terms: Public domain | W3C validator |