| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmpti | Structured version Visualization version GIF version | ||
| Description: Value of a function given in maps-to notation. (Contributed by Mario Carneiro, 23-Apr-2014.) |
| Ref | Expression |
|---|---|
| fvmptg.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| fvmptg.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fvmpti | ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = ( I ‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptg.1 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 2 | fvmptg.2 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 3 | 1, 2 | fvmptg 6927 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ V) → (𝐹‘𝐴) = 𝐶) |
| 4 | fvi 6898 | . . . 4 ⊢ (𝐶 ∈ V → ( I ‘𝐶) = 𝐶) | |
| 5 | 4 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ V) → ( I ‘𝐶) = 𝐶) |
| 6 | 3, 5 | eqtr4d 2769 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ V) → (𝐹‘𝐴) = ( I ‘𝐶)) |
| 7 | 1 | eleq1d 2816 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝐵 ∈ V ↔ 𝐶 ∈ V)) |
| 8 | 2 | dmmpt 6187 | . . . . . . . 8 ⊢ dom 𝐹 = {𝑥 ∈ 𝐷 ∣ 𝐵 ∈ V} |
| 9 | 7, 8 | elrab2 3650 | . . . . . . 7 ⊢ (𝐴 ∈ dom 𝐹 ↔ (𝐴 ∈ 𝐷 ∧ 𝐶 ∈ V)) |
| 10 | 9 | baib 535 | . . . . . 6 ⊢ (𝐴 ∈ 𝐷 → (𝐴 ∈ dom 𝐹 ↔ 𝐶 ∈ V)) |
| 11 | 10 | notbid 318 | . . . . 5 ⊢ (𝐴 ∈ 𝐷 → (¬ 𝐴 ∈ dom 𝐹 ↔ ¬ 𝐶 ∈ V)) |
| 12 | ndmfv 6854 | . . . . 5 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) | |
| 13 | 11, 12 | biimtrrdi 254 | . . . 4 ⊢ (𝐴 ∈ 𝐷 → (¬ 𝐶 ∈ V → (𝐹‘𝐴) = ∅)) |
| 14 | 13 | imp 406 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ ¬ 𝐶 ∈ V) → (𝐹‘𝐴) = ∅) |
| 15 | fvprc 6814 | . . . 4 ⊢ (¬ 𝐶 ∈ V → ( I ‘𝐶) = ∅) | |
| 16 | 15 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ ¬ 𝐶 ∈ V) → ( I ‘𝐶) = ∅) |
| 17 | 14, 16 | eqtr4d 2769 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ ¬ 𝐶 ∈ V) → (𝐹‘𝐴) = ( I ‘𝐶)) |
| 18 | 6, 17 | pm2.61dan 812 | 1 ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = ( I ‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4283 ↦ cmpt 5172 I cid 5510 dom cdm 5616 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fv 6489 |
| This theorem is referenced by: fvmpt2i 6939 fvmptex 6943 sumeq2ii 15600 summolem3 15621 fsumf1o 15630 isumshft 15746 prodeq2ii 15818 prodmolem3 15840 fprodf1o 15853 |
| Copyright terms: Public domain | W3C validator |