Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvmpti | Structured version Visualization version GIF version |
Description: Value of a function given in maps-to notation. (Contributed by Mario Carneiro, 23-Apr-2014.) |
Ref | Expression |
---|---|
fvmptg.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
fvmptg.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
Ref | Expression |
---|---|
fvmpti | ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = ( I ‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptg.1 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
2 | fvmptg.2 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
3 | 1, 2 | fvmptg 6913 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ V) → (𝐹‘𝐴) = 𝐶) |
4 | fvi 6884 | . . . 4 ⊢ (𝐶 ∈ V → ( I ‘𝐶) = 𝐶) | |
5 | 4 | adantl 482 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ V) → ( I ‘𝐶) = 𝐶) |
6 | 3, 5 | eqtr4d 2780 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ V) → (𝐹‘𝐴) = ( I ‘𝐶)) |
7 | 1 | eleq1d 2822 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝐵 ∈ V ↔ 𝐶 ∈ V)) |
8 | 2 | dmmpt 6166 | . . . . . . . 8 ⊢ dom 𝐹 = {𝑥 ∈ 𝐷 ∣ 𝐵 ∈ V} |
9 | 7, 8 | elrab2 3637 | . . . . . . 7 ⊢ (𝐴 ∈ dom 𝐹 ↔ (𝐴 ∈ 𝐷 ∧ 𝐶 ∈ V)) |
10 | 9 | baib 536 | . . . . . 6 ⊢ (𝐴 ∈ 𝐷 → (𝐴 ∈ dom 𝐹 ↔ 𝐶 ∈ V)) |
11 | 10 | notbid 317 | . . . . 5 ⊢ (𝐴 ∈ 𝐷 → (¬ 𝐴 ∈ dom 𝐹 ↔ ¬ 𝐶 ∈ V)) |
12 | ndmfv 6844 | . . . . 5 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) | |
13 | 11, 12 | syl6bir 253 | . . . 4 ⊢ (𝐴 ∈ 𝐷 → (¬ 𝐶 ∈ V → (𝐹‘𝐴) = ∅)) |
14 | 13 | imp 407 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ ¬ 𝐶 ∈ V) → (𝐹‘𝐴) = ∅) |
15 | fvprc 6804 | . . . 4 ⊢ (¬ 𝐶 ∈ V → ( I ‘𝐶) = ∅) | |
16 | 15 | adantl 482 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ ¬ 𝐶 ∈ V) → ( I ‘𝐶) = ∅) |
17 | 14, 16 | eqtr4d 2780 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ ¬ 𝐶 ∈ V) → (𝐹‘𝐴) = ( I ‘𝐶)) |
18 | 6, 17 | pm2.61dan 810 | 1 ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = ( I ‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ∅c0 4267 ↦ cmpt 5170 I cid 5506 dom cdm 5608 ‘cfv 6466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-iota 6418 df-fun 6468 df-fv 6474 |
This theorem is referenced by: fvmpt2i 6925 fvmptex 6929 sumeq2ii 15484 summolem3 15505 fsumf1o 15514 isumshft 15630 prodeq2ii 15702 prodmolem3 15722 fprodf1o 15735 |
Copyright terms: Public domain | W3C validator |