MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumfc Structured version   Visualization version   GIF version

Theorem sumfc 15616
Description: A lemma to facilitate conversions from the function form to the class-variable form of a sum. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
Assertion
Ref Expression
sumfc Σ𝑗𝐴 ((𝑘𝐴𝐵)‘𝑗) = Σ𝑘𝐴 𝐵
Distinct variable groups:   𝑗,𝑘,𝐴   𝐵,𝑗
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem sumfc
StepHypRef Expression
1 eqid 2731 . . . 4 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
21fvmpt2i 6939 . . 3 (𝑘𝐴 → ((𝑘𝐴𝐵)‘𝑘) = ( I ‘𝐵))
32sumeq2i 15605 . 2 Σ𝑘𝐴 ((𝑘𝐴𝐵)‘𝑘) = Σ𝑘𝐴 ( I ‘𝐵)
4 fveq2 6822 . . 3 (𝑗 = 𝑘 → ((𝑘𝐴𝐵)‘𝑗) = ((𝑘𝐴𝐵)‘𝑘))
5 nffvmpt1 6833 . . 3 𝑘((𝑘𝐴𝐵)‘𝑗)
6 nfcv 2894 . . 3 𝑗((𝑘𝐴𝐵)‘𝑘)
74, 5, 6cbvsum 15602 . 2 Σ𝑗𝐴 ((𝑘𝐴𝐵)‘𝑗) = Σ𝑘𝐴 ((𝑘𝐴𝐵)‘𝑘)
8 sum2id 15615 . 2 Σ𝑘𝐴 𝐵 = Σ𝑘𝐴 ( I ‘𝐵)
93, 7, 83eqtr4i 2764 1 Σ𝑗𝐴 ((𝑘𝐴𝐵)‘𝑗) = Σ𝑘𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cmpt 5170   I cid 5508  cfv 6481  Σcsu 15593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-seq 13909  df-sum 15594
This theorem is referenced by:  fsumf1o  15630  sumss  15631  fsumss  15632  fsumcl2lem  15638  fsumadd  15647  isumclim3  15666  isummulc2  15669  fsummulc2  15691  fsumrelem  15714  isumshft  15746  fprodefsum  16002  gsumfsum  21371
  Copyright terms: Public domain W3C validator