MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumfc Structured version   Visualization version   GIF version

Theorem sumfc 14929
Description: A lemma to facilitate conversions from the function form to the class-variable form of a sum. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
Assertion
Ref Expression
sumfc Σ𝑗𝐴 ((𝑘𝐴𝐵)‘𝑗) = Σ𝑘𝐴 𝐵
Distinct variable groups:   𝑗,𝑘,𝐴   𝐵,𝑗
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem sumfc
StepHypRef Expression
1 eqid 2778 . . . 4 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
21fvmpt2i 6606 . . 3 (𝑘𝐴 → ((𝑘𝐴𝐵)‘𝑘) = ( I ‘𝐵))
32sumeq2i 14919 . 2 Σ𝑘𝐴 ((𝑘𝐴𝐵)‘𝑘) = Σ𝑘𝐴 ( I ‘𝐵)
4 nffvmpt1 6512 . . 3 𝑘((𝑘𝐴𝐵)‘𝑗)
5 nfcv 2932 . . 3 𝑗((𝑘𝐴𝐵)‘𝑘)
6 fveq2 6501 . . 3 (𝑗 = 𝑘 → ((𝑘𝐴𝐵)‘𝑗) = ((𝑘𝐴𝐵)‘𝑘))
74, 5, 6cbvsumi 14917 . 2 Σ𝑗𝐴 ((𝑘𝐴𝐵)‘𝑗) = Σ𝑘𝐴 ((𝑘𝐴𝐵)‘𝑘)
8 sum2id 14928 . 2 Σ𝑘𝐴 𝐵 = Σ𝑘𝐴 ( I ‘𝐵)
93, 7, 83eqtr4i 2812 1 Σ𝑗𝐴 ((𝑘𝐴𝐵)‘𝑗) = Σ𝑘𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1507  cmpt 5009   I cid 5312  cfv 6190  Σcsu 14906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-cnex 10393  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-iun 4795  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-om 7399  df-1st 7503  df-2nd 7504  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-er 8091  df-en 8309  df-dom 8310  df-sdom 8311  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-nn 11442  df-n0 11711  df-z 11797  df-uz 12062  df-fz 12712  df-seq 13188  df-sum 14907
This theorem is referenced by:  fsumf1o  14943  sumss  14944  fsumss  14945  fsumcl2lem  14951  fsumadd  14959  isumclim3  14977  isummulc2  14980  fsummulc2  15002  fsumrelem  15025  isumshft  15057  fprodefsum  15311  gsumfsum  20317
  Copyright terms: Public domain W3C validator