MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gaset Structured version   Visualization version   GIF version

Theorem gaset 18543
Description: The right argument of a group action is a set. (Contributed by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
gaset ( ∈ (𝐺 GrpAct 𝑌) → 𝑌 ∈ V)

Proof of Theorem gaset
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2738 . . . 4 (+g𝐺) = (+g𝐺)
3 eqid 2738 . . . 4 (0g𝐺) = (0g𝐺)
41, 2, 3isga 18541 . . 3 ( ∈ (𝐺 GrpAct 𝑌) ↔ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) ∧ ( :((Base‘𝐺) × 𝑌)⟶𝑌 ∧ ∀𝑥𝑌 (((0g𝐺) 𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g𝐺)𝑧) 𝑥) = (𝑦 (𝑧 𝑥))))))
54simplbi 501 . 2 ( ∈ (𝐺 GrpAct 𝑌) → (𝐺 ∈ Grp ∧ 𝑌 ∈ V))
65simprd 499 1 ( ∈ (𝐺 GrpAct 𝑌) → 𝑌 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  wral 3053  Vcvv 3398   × cxp 5523  wf 6335  cfv 6339  (class class class)co 7172  Basecbs 16588  +gcplusg 16670  0gc0g 16818  Grpcgrp 18221   GrpAct cga 18539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7481
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-br 5031  df-opab 5093  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-fv 6347  df-ov 7175  df-oprab 7176  df-mpo 7177  df-map 8441  df-ga 18540
This theorem is referenced by:  gass  18551  gasubg  18552  galactghm  18652
  Copyright terms: Public domain W3C validator