![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gagrp | Structured version Visualization version GIF version |
Description: The left argument of a group action is a group. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
gagrp | ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2825 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2825 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | eqid 2825 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
4 | 1, 2, 3 | isga 18081 | . . 3 ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) ↔ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) ∧ ( ⊕ :((Base‘𝐺) × 𝑌)⟶𝑌 ∧ ∀𝑥 ∈ 𝑌 (((0g‘𝐺) ⊕ 𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥)))))) |
5 | 4 | simplbi 493 | . 2 ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → (𝐺 ∈ Grp ∧ 𝑌 ∈ V)) |
6 | 5 | simpld 490 | 1 ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ∀wral 3117 Vcvv 3414 × cxp 5344 ⟶wf 6123 ‘cfv 6127 (class class class)co 6910 Basecbs 16229 +gcplusg 16312 0gc0g 16460 Grpcgrp 17783 GrpAct cga 18079 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-opab 4938 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-fv 6135 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-map 8129 df-ga 18080 |
This theorem is referenced by: gafo 18086 gass 18091 galcan 18094 gacan 18095 gapm 18096 gaorber 18098 gastacl 18099 galactghm 18180 sylow2alem2 18391 |
Copyright terms: Public domain | W3C validator |