MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gagrp Structured version   Visualization version   GIF version

Theorem gagrp 18813
Description: The left argument of a group action is a group. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
gagrp ( ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp)

Proof of Theorem gagrp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2738 . . . 4 (+g𝐺) = (+g𝐺)
3 eqid 2738 . . . 4 (0g𝐺) = (0g𝐺)
41, 2, 3isga 18812 . . 3 ( ∈ (𝐺 GrpAct 𝑌) ↔ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) ∧ ( :((Base‘𝐺) × 𝑌)⟶𝑌 ∧ ∀𝑥𝑌 (((0g𝐺) 𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g𝐺)𝑧) 𝑥) = (𝑦 (𝑧 𝑥))))))
54simplbi 497 . 2 ( ∈ (𝐺 GrpAct 𝑌) → (𝐺 ∈ Grp ∧ 𝑌 ∈ V))
65simpld 494 1 ( ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422   × cxp 5578  wf 6414  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  0gc0g 17067  Grpcgrp 18492   GrpAct cga 18810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-ga 18811
This theorem is referenced by:  gafo  18817  gass  18822  galcan  18825  gacan  18826  gapm  18827  gaorber  18829  gastacl  18830  galactghm  18927  sylow2alem2  19138
  Copyright terms: Public domain W3C validator