MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  galactghm Structured version   Visualization version   GIF version

Theorem galactghm 19194
Description: The currying of a group action is a group homomorphism between the group 𝐺 and the symmetric group (SymGrp‘𝑌). (Contributed by FL, 17-May-2010.) (Proof shortened by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
galactghm.x 𝑋 = (Base‘𝐺)
galactghm.h 𝐻 = (SymGrp‘𝑌)
galactghm.f 𝐹 = (𝑥𝑋 ↦ (𝑦𝑌 ↦ (𝑥 𝑦)))
Assertion
Ref Expression
galactghm ( ∈ (𝐺 GrpAct 𝑌) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥, ,𝑦   𝑥,𝑋,𝑦   𝑥,𝐻   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐻(𝑦)

Proof of Theorem galactghm
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 galactghm.x . 2 𝑋 = (Base‘𝐺)
2 eqid 2733 . 2 (Base‘𝐻) = (Base‘𝐻)
3 eqid 2733 . 2 (+g𝐺) = (+g𝐺)
4 eqid 2733 . 2 (+g𝐻) = (+g𝐻)
5 gagrp 19080 . 2 ( ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp)
6 gaset 19081 . . 3 ( ∈ (𝐺 GrpAct 𝑌) → 𝑌 ∈ V)
7 galactghm.h . . . 4 𝐻 = (SymGrp‘𝑌)
87symggrp 19190 . . 3 (𝑌 ∈ V → 𝐻 ∈ Grp)
96, 8syl 17 . 2 ( ∈ (𝐺 GrpAct 𝑌) → 𝐻 ∈ Grp)
10 eqid 2733 . . . . 5 (𝑦𝑌 ↦ (𝑥 𝑦)) = (𝑦𝑌 ↦ (𝑥 𝑦))
111, 10gapm 19094 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑋) → (𝑦𝑌 ↦ (𝑥 𝑦)):𝑌1-1-onto𝑌)
126adantr 482 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑋) → 𝑌 ∈ V)
137, 2elsymgbas 19163 . . . . 5 (𝑌 ∈ V → ((𝑦𝑌 ↦ (𝑥 𝑦)) ∈ (Base‘𝐻) ↔ (𝑦𝑌 ↦ (𝑥 𝑦)):𝑌1-1-onto𝑌))
1412, 13syl 17 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑋) → ((𝑦𝑌 ↦ (𝑥 𝑦)) ∈ (Base‘𝐻) ↔ (𝑦𝑌 ↦ (𝑥 𝑦)):𝑌1-1-onto𝑌))
1511, 14mpbird 257 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑋) → (𝑦𝑌 ↦ (𝑥 𝑦)) ∈ (Base‘𝐻))
16 galactghm.f . . 3 𝐹 = (𝑥𝑋 ↦ (𝑦𝑌 ↦ (𝑥 𝑦)))
1715, 16fmptd 7066 . 2 ( ∈ (𝐺 GrpAct 𝑌) → 𝐹:𝑋⟶(Base‘𝐻))
18 df-3an 1090 . . . . . 6 ((𝑧𝑋𝑤𝑋𝑦𝑌) ↔ ((𝑧𝑋𝑤𝑋) ∧ 𝑦𝑌))
191, 3gaass 19085 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋𝑦𝑌)) → ((𝑧(+g𝐺)𝑤) 𝑦) = (𝑧 (𝑤 𝑦)))
2018, 19sylan2br 596 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑦𝑌)) → ((𝑧(+g𝐺)𝑤) 𝑦) = (𝑧 (𝑤 𝑦)))
2120anassrs 469 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑦𝑌) → ((𝑧(+g𝐺)𝑤) 𝑦) = (𝑧 (𝑤 𝑦)))
2221mpteq2dva 5209 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝑦𝑌 ↦ ((𝑧(+g𝐺)𝑤) 𝑦)) = (𝑦𝑌 ↦ (𝑧 (𝑤 𝑦))))
23 oveq1 7368 . . . . 5 (𝑥 = (𝑧(+g𝐺)𝑤) → (𝑥 𝑦) = ((𝑧(+g𝐺)𝑤) 𝑦))
2423mpteq2dv 5211 . . . 4 (𝑥 = (𝑧(+g𝐺)𝑤) → (𝑦𝑌 ↦ (𝑥 𝑦)) = (𝑦𝑌 ↦ ((𝑧(+g𝐺)𝑤) 𝑦)))
255adantr 482 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → 𝐺 ∈ Grp)
26 simprl 770 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → 𝑧𝑋)
27 simprr 772 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → 𝑤𝑋)
281, 3grpcl 18764 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑧𝑋𝑤𝑋) → (𝑧(+g𝐺)𝑤) ∈ 𝑋)
2925, 26, 27, 28syl3anc 1372 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝑧(+g𝐺)𝑤) ∈ 𝑋)
306adantr 482 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → 𝑌 ∈ V)
3130mptexd 7178 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝑦𝑌 ↦ ((𝑧(+g𝐺)𝑤) 𝑦)) ∈ V)
3216, 24, 29, 31fvmptd3 6975 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹‘(𝑧(+g𝐺)𝑤)) = (𝑦𝑌 ↦ ((𝑧(+g𝐺)𝑤) 𝑦)))
3317adantr 482 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → 𝐹:𝑋⟶(Base‘𝐻))
3433, 26ffvelcdmd 7040 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹𝑧) ∈ (Base‘𝐻))
3533, 27ffvelcdmd 7040 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹𝑤) ∈ (Base‘𝐻))
367, 2, 4symgov 19173 . . . . 5 (((𝐹𝑧) ∈ (Base‘𝐻) ∧ (𝐹𝑤) ∈ (Base‘𝐻)) → ((𝐹𝑧)(+g𝐻)(𝐹𝑤)) = ((𝐹𝑧) ∘ (𝐹𝑤)))
3734, 35, 36syl2anc 585 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹𝑧)(+g𝐻)(𝐹𝑤)) = ((𝐹𝑧) ∘ (𝐹𝑤)))
381gaf 19083 . . . . . . 7 ( ∈ (𝐺 GrpAct 𝑌) → :(𝑋 × 𝑌)⟶𝑌)
3938ad2antrr 725 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑦𝑌) → :(𝑋 × 𝑌)⟶𝑌)
4027adantr 482 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑦𝑌) → 𝑤𝑋)
41 simpr 486 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑦𝑌) → 𝑦𝑌)
4239, 40, 41fovcdmd 7530 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑦𝑌) → (𝑤 𝑦) ∈ 𝑌)
43 oveq1 7368 . . . . . . 7 (𝑥 = 𝑤 → (𝑥 𝑦) = (𝑤 𝑦))
4443mpteq2dv 5211 . . . . . 6 (𝑥 = 𝑤 → (𝑦𝑌 ↦ (𝑥 𝑦)) = (𝑦𝑌 ↦ (𝑤 𝑦)))
4530mptexd 7178 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝑦𝑌 ↦ (𝑤 𝑦)) ∈ V)
4616, 44, 27, 45fvmptd3 6975 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹𝑤) = (𝑦𝑌 ↦ (𝑤 𝑦)))
47 oveq1 7368 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 𝑦) = (𝑧 𝑦))
4847mpteq2dv 5211 . . . . . . 7 (𝑥 = 𝑧 → (𝑦𝑌 ↦ (𝑥 𝑦)) = (𝑦𝑌 ↦ (𝑧 𝑦)))
4930mptexd 7178 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝑦𝑌 ↦ (𝑧 𝑦)) ∈ V)
5016, 48, 26, 49fvmptd3 6975 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹𝑧) = (𝑦𝑌 ↦ (𝑧 𝑦)))
51 oveq2 7369 . . . . . . 7 (𝑦 = 𝑥 → (𝑧 𝑦) = (𝑧 𝑥))
5251cbvmptv 5222 . . . . . 6 (𝑦𝑌 ↦ (𝑧 𝑦)) = (𝑥𝑌 ↦ (𝑧 𝑥))
5350, 52eqtrdi 2789 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹𝑧) = (𝑥𝑌 ↦ (𝑧 𝑥)))
54 oveq2 7369 . . . . 5 (𝑥 = (𝑤 𝑦) → (𝑧 𝑥) = (𝑧 (𝑤 𝑦)))
5542, 46, 53, 54fmptco 7079 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹𝑧) ∘ (𝐹𝑤)) = (𝑦𝑌 ↦ (𝑧 (𝑤 𝑦))))
5637, 55eqtrd 2773 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹𝑧)(+g𝐻)(𝐹𝑤)) = (𝑦𝑌 ↦ (𝑧 (𝑤 𝑦))))
5722, 32, 563eqtr4d 2783 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹‘(𝑧(+g𝐺)𝑤)) = ((𝐹𝑧)(+g𝐻)(𝐹𝑤)))
581, 2, 3, 4, 5, 9, 17, 57isghmd 19025 1 ( ∈ (𝐺 GrpAct 𝑌) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  Vcvv 3447  cmpt 5192   × cxp 5635  ccom 5641  wf 6496  1-1-ontowf1o 6499  cfv 6500  (class class class)co 7361  Basecbs 17091  +gcplusg 17141  Grpcgrp 18756   GrpHom cghm 19013   GrpAct cga 19077  SymGrpcsymg 19156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-tp 4595  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-1st 7925  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-1o 8416  df-er 8654  df-map 8773  df-en 8890  df-dom 8891  df-sdom 8892  df-fin 8893  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-nn 12162  df-2 12224  df-3 12225  df-4 12226  df-5 12227  df-6 12228  df-7 12229  df-8 12230  df-9 12231  df-n0 12422  df-z 12508  df-uz 12772  df-fz 13434  df-struct 17027  df-sets 17044  df-slot 17062  df-ndx 17074  df-base 17092  df-ress 17121  df-plusg 17154  df-tset 17160  df-0g 17331  df-mgm 18505  df-sgrp 18554  df-mnd 18565  df-efmnd 18687  df-grp 18759  df-minusg 18760  df-ghm 19014  df-ga 19078  df-symg 19157
This theorem is referenced by:  cayleylem1  19202
  Copyright terms: Public domain W3C validator