MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  galactghm Structured version   Visualization version   GIF version

Theorem galactghm 18135
Description: The currying of a group action is a group homomorphism between the group 𝐺 and the symmetric group (SymGrp‘𝑌). (Contributed by FL, 17-May-2010.) (Proof shortened by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
galactghm.x 𝑋 = (Base‘𝐺)
galactghm.h 𝐻 = (SymGrp‘𝑌)
galactghm.f 𝐹 = (𝑥𝑋 ↦ (𝑦𝑌 ↦ (𝑥 𝑦)))
Assertion
Ref Expression
galactghm ( ∈ (𝐺 GrpAct 𝑌) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥, ,𝑦   𝑥,𝑋,𝑦   𝑥,𝐻   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐻(𝑦)

Proof of Theorem galactghm
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 galactghm.x . 2 𝑋 = (Base‘𝐺)
2 eqid 2799 . 2 (Base‘𝐻) = (Base‘𝐻)
3 eqid 2799 . 2 (+g𝐺) = (+g𝐺)
4 eqid 2799 . 2 (+g𝐻) = (+g𝐻)
5 gagrp 18037 . 2 ( ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp)
6 gaset 18038 . . 3 ( ∈ (𝐺 GrpAct 𝑌) → 𝑌 ∈ V)
7 galactghm.h . . . 4 𝐻 = (SymGrp‘𝑌)
87symggrp 18132 . . 3 (𝑌 ∈ V → 𝐻 ∈ Grp)
96, 8syl 17 . 2 ( ∈ (𝐺 GrpAct 𝑌) → 𝐻 ∈ Grp)
10 eqid 2799 . . . . 5 (𝑦𝑌 ↦ (𝑥 𝑦)) = (𝑦𝑌 ↦ (𝑥 𝑦))
111, 10gapm 18051 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑋) → (𝑦𝑌 ↦ (𝑥 𝑦)):𝑌1-1-onto𝑌)
126adantr 473 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑋) → 𝑌 ∈ V)
137, 2elsymgbas 18114 . . . . 5 (𝑌 ∈ V → ((𝑦𝑌 ↦ (𝑥 𝑦)) ∈ (Base‘𝐻) ↔ (𝑦𝑌 ↦ (𝑥 𝑦)):𝑌1-1-onto𝑌))
1412, 13syl 17 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑋) → ((𝑦𝑌 ↦ (𝑥 𝑦)) ∈ (Base‘𝐻) ↔ (𝑦𝑌 ↦ (𝑥 𝑦)):𝑌1-1-onto𝑌))
1511, 14mpbird 249 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑋) → (𝑦𝑌 ↦ (𝑥 𝑦)) ∈ (Base‘𝐻))
16 galactghm.f . . 3 𝐹 = (𝑥𝑋 ↦ (𝑦𝑌 ↦ (𝑥 𝑦)))
1715, 16fmptd 6610 . 2 ( ∈ (𝐺 GrpAct 𝑌) → 𝐹:𝑋⟶(Base‘𝐻))
18 df-3an 1110 . . . . . 6 ((𝑧𝑋𝑤𝑋𝑦𝑌) ↔ ((𝑧𝑋𝑤𝑋) ∧ 𝑦𝑌))
191, 3gaass 18042 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋𝑦𝑌)) → ((𝑧(+g𝐺)𝑤) 𝑦) = (𝑧 (𝑤 𝑦)))
2018, 19sylan2br 589 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑦𝑌)) → ((𝑧(+g𝐺)𝑤) 𝑦) = (𝑧 (𝑤 𝑦)))
2120anassrs 460 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑦𝑌) → ((𝑧(+g𝐺)𝑤) 𝑦) = (𝑧 (𝑤 𝑦)))
2221mpteq2dva 4937 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝑦𝑌 ↦ ((𝑧(+g𝐺)𝑤) 𝑦)) = (𝑦𝑌 ↦ (𝑧 (𝑤 𝑦))))
235adantr 473 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → 𝐺 ∈ Grp)
24 simprl 788 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → 𝑧𝑋)
25 simprr 790 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → 𝑤𝑋)
261, 3grpcl 17746 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑧𝑋𝑤𝑋) → (𝑧(+g𝐺)𝑤) ∈ 𝑋)
2723, 24, 25, 26syl3anc 1491 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝑧(+g𝐺)𝑤) ∈ 𝑋)
286adantr 473 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → 𝑌 ∈ V)
29 mptexg 6713 . . . . 5 (𝑌 ∈ V → (𝑦𝑌 ↦ ((𝑧(+g𝐺)𝑤) 𝑦)) ∈ V)
3028, 29syl 17 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝑦𝑌 ↦ ((𝑧(+g𝐺)𝑤) 𝑦)) ∈ V)
31 oveq1 6885 . . . . . 6 (𝑥 = (𝑧(+g𝐺)𝑤) → (𝑥 𝑦) = ((𝑧(+g𝐺)𝑤) 𝑦))
3231mpteq2dv 4938 . . . . 5 (𝑥 = (𝑧(+g𝐺)𝑤) → (𝑦𝑌 ↦ (𝑥 𝑦)) = (𝑦𝑌 ↦ ((𝑧(+g𝐺)𝑤) 𝑦)))
3332, 16fvmptg 6505 . . . 4 (((𝑧(+g𝐺)𝑤) ∈ 𝑋 ∧ (𝑦𝑌 ↦ ((𝑧(+g𝐺)𝑤) 𝑦)) ∈ V) → (𝐹‘(𝑧(+g𝐺)𝑤)) = (𝑦𝑌 ↦ ((𝑧(+g𝐺)𝑤) 𝑦)))
3427, 30, 33syl2anc 580 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹‘(𝑧(+g𝐺)𝑤)) = (𝑦𝑌 ↦ ((𝑧(+g𝐺)𝑤) 𝑦)))
3517adantr 473 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → 𝐹:𝑋⟶(Base‘𝐻))
3635, 24ffvelrnd 6586 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹𝑧) ∈ (Base‘𝐻))
3735, 25ffvelrnd 6586 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹𝑤) ∈ (Base‘𝐻))
387, 2, 4symgov 18122 . . . . 5 (((𝐹𝑧) ∈ (Base‘𝐻) ∧ (𝐹𝑤) ∈ (Base‘𝐻)) → ((𝐹𝑧)(+g𝐻)(𝐹𝑤)) = ((𝐹𝑧) ∘ (𝐹𝑤)))
3936, 37, 38syl2anc 580 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹𝑧)(+g𝐻)(𝐹𝑤)) = ((𝐹𝑧) ∘ (𝐹𝑤)))
401gaf 18040 . . . . . . 7 ( ∈ (𝐺 GrpAct 𝑌) → :(𝑋 × 𝑌)⟶𝑌)
4140ad2antrr 718 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑦𝑌) → :(𝑋 × 𝑌)⟶𝑌)
4225adantr 473 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑦𝑌) → 𝑤𝑋)
43 simpr 478 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑦𝑌) → 𝑦𝑌)
4441, 42, 43fovrnd 7040 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑦𝑌) → (𝑤 𝑦) ∈ 𝑌)
45 mptexg 6713 . . . . . . 7 (𝑌 ∈ V → (𝑦𝑌 ↦ (𝑤 𝑦)) ∈ V)
4628, 45syl 17 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝑦𝑌 ↦ (𝑤 𝑦)) ∈ V)
47 oveq1 6885 . . . . . . . 8 (𝑥 = 𝑤 → (𝑥 𝑦) = (𝑤 𝑦))
4847mpteq2dv 4938 . . . . . . 7 (𝑥 = 𝑤 → (𝑦𝑌 ↦ (𝑥 𝑦)) = (𝑦𝑌 ↦ (𝑤 𝑦)))
4948, 16fvmptg 6505 . . . . . 6 ((𝑤𝑋 ∧ (𝑦𝑌 ↦ (𝑤 𝑦)) ∈ V) → (𝐹𝑤) = (𝑦𝑌 ↦ (𝑤 𝑦)))
5025, 46, 49syl2anc 580 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹𝑤) = (𝑦𝑌 ↦ (𝑤 𝑦)))
51 mptexg 6713 . . . . . . . 8 (𝑌 ∈ V → (𝑦𝑌 ↦ (𝑧 𝑦)) ∈ V)
5228, 51syl 17 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝑦𝑌 ↦ (𝑧 𝑦)) ∈ V)
53 oveq1 6885 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥 𝑦) = (𝑧 𝑦))
5453mpteq2dv 4938 . . . . . . . 8 (𝑥 = 𝑧 → (𝑦𝑌 ↦ (𝑥 𝑦)) = (𝑦𝑌 ↦ (𝑧 𝑦)))
5554, 16fvmptg 6505 . . . . . . 7 ((𝑧𝑋 ∧ (𝑦𝑌 ↦ (𝑧 𝑦)) ∈ V) → (𝐹𝑧) = (𝑦𝑌 ↦ (𝑧 𝑦)))
5624, 52, 55syl2anc 580 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹𝑧) = (𝑦𝑌 ↦ (𝑧 𝑦)))
57 oveq2 6886 . . . . . . 7 (𝑦 = 𝑥 → (𝑧 𝑦) = (𝑧 𝑥))
5857cbvmptv 4943 . . . . . 6 (𝑦𝑌 ↦ (𝑧 𝑦)) = (𝑥𝑌 ↦ (𝑧 𝑥))
5956, 58syl6eq 2849 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹𝑧) = (𝑥𝑌 ↦ (𝑧 𝑥)))
60 oveq2 6886 . . . . 5 (𝑥 = (𝑤 𝑦) → (𝑧 𝑥) = (𝑧 (𝑤 𝑦)))
6144, 50, 59, 60fmptco 6623 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹𝑧) ∘ (𝐹𝑤)) = (𝑦𝑌 ↦ (𝑧 (𝑤 𝑦))))
6239, 61eqtrd 2833 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹𝑧)(+g𝐻)(𝐹𝑤)) = (𝑦𝑌 ↦ (𝑧 (𝑤 𝑦))))
6322, 34, 623eqtr4d 2843 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹‘(𝑧(+g𝐺)𝑤)) = ((𝐹𝑧)(+g𝐻)(𝐹𝑤)))
641, 2, 3, 4, 5, 9, 17, 63isghmd 17982 1 ( ∈ (𝐺 GrpAct 𝑌) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wcel 2157  Vcvv 3385  cmpt 4922   × cxp 5310  ccom 5316  wf 6097  1-1-ontowf1o 6100  cfv 6101  (class class class)co 6878  Basecbs 16184  +gcplusg 16267  Grpcgrp 17738   GrpHom cghm 17970   GrpAct cga 18034  SymGrpcsymg 18109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-map 8097  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-9 11383  df-n0 11581  df-z 11667  df-uz 11931  df-fz 12581  df-struct 16186  df-ndx 16187  df-slot 16188  df-base 16190  df-plusg 16280  df-tset 16286  df-0g 16417  df-mgm 17557  df-sgrp 17599  df-mnd 17610  df-grp 17741  df-minusg 17742  df-ghm 17971  df-ga 18035  df-symg 18110
This theorem is referenced by:  cayleylem1  18144
  Copyright terms: Public domain W3C validator