MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  galactghm Structured version   Visualization version   GIF version

Theorem galactghm 18524
Description: The currying of a group action is a group homomorphism between the group 𝐺 and the symmetric group (SymGrp‘𝑌). (Contributed by FL, 17-May-2010.) (Proof shortened by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
galactghm.x 𝑋 = (Base‘𝐺)
galactghm.h 𝐻 = (SymGrp‘𝑌)
galactghm.f 𝐹 = (𝑥𝑋 ↦ (𝑦𝑌 ↦ (𝑥 𝑦)))
Assertion
Ref Expression
galactghm ( ∈ (𝐺 GrpAct 𝑌) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥, ,𝑦   𝑥,𝑋,𝑦   𝑥,𝐻   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐻(𝑦)

Proof of Theorem galactghm
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 galactghm.x . 2 𝑋 = (Base‘𝐺)
2 eqid 2798 . 2 (Base‘𝐻) = (Base‘𝐻)
3 eqid 2798 . 2 (+g𝐺) = (+g𝐺)
4 eqid 2798 . 2 (+g𝐻) = (+g𝐻)
5 gagrp 18414 . 2 ( ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp)
6 gaset 18415 . . 3 ( ∈ (𝐺 GrpAct 𝑌) → 𝑌 ∈ V)
7 galactghm.h . . . 4 𝐻 = (SymGrp‘𝑌)
87symggrp 18520 . . 3 (𝑌 ∈ V → 𝐻 ∈ Grp)
96, 8syl 17 . 2 ( ∈ (𝐺 GrpAct 𝑌) → 𝐻 ∈ Grp)
10 eqid 2798 . . . . 5 (𝑦𝑌 ↦ (𝑥 𝑦)) = (𝑦𝑌 ↦ (𝑥 𝑦))
111, 10gapm 18428 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑋) → (𝑦𝑌 ↦ (𝑥 𝑦)):𝑌1-1-onto𝑌)
126adantr 484 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑋) → 𝑌 ∈ V)
137, 2elsymgbas 18494 . . . . 5 (𝑌 ∈ V → ((𝑦𝑌 ↦ (𝑥 𝑦)) ∈ (Base‘𝐻) ↔ (𝑦𝑌 ↦ (𝑥 𝑦)):𝑌1-1-onto𝑌))
1412, 13syl 17 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑋) → ((𝑦𝑌 ↦ (𝑥 𝑦)) ∈ (Base‘𝐻) ↔ (𝑦𝑌 ↦ (𝑥 𝑦)):𝑌1-1-onto𝑌))
1511, 14mpbird 260 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑋) → (𝑦𝑌 ↦ (𝑥 𝑦)) ∈ (Base‘𝐻))
16 galactghm.f . . 3 𝐹 = (𝑥𝑋 ↦ (𝑦𝑌 ↦ (𝑥 𝑦)))
1715, 16fmptd 6855 . 2 ( ∈ (𝐺 GrpAct 𝑌) → 𝐹:𝑋⟶(Base‘𝐻))
18 df-3an 1086 . . . . . 6 ((𝑧𝑋𝑤𝑋𝑦𝑌) ↔ ((𝑧𝑋𝑤𝑋) ∧ 𝑦𝑌))
191, 3gaass 18419 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋𝑦𝑌)) → ((𝑧(+g𝐺)𝑤) 𝑦) = (𝑧 (𝑤 𝑦)))
2018, 19sylan2br 597 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑦𝑌)) → ((𝑧(+g𝐺)𝑤) 𝑦) = (𝑧 (𝑤 𝑦)))
2120anassrs 471 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑦𝑌) → ((𝑧(+g𝐺)𝑤) 𝑦) = (𝑧 (𝑤 𝑦)))
2221mpteq2dva 5125 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝑦𝑌 ↦ ((𝑧(+g𝐺)𝑤) 𝑦)) = (𝑦𝑌 ↦ (𝑧 (𝑤 𝑦))))
23 oveq1 7142 . . . . 5 (𝑥 = (𝑧(+g𝐺)𝑤) → (𝑥 𝑦) = ((𝑧(+g𝐺)𝑤) 𝑦))
2423mpteq2dv 5126 . . . 4 (𝑥 = (𝑧(+g𝐺)𝑤) → (𝑦𝑌 ↦ (𝑥 𝑦)) = (𝑦𝑌 ↦ ((𝑧(+g𝐺)𝑤) 𝑦)))
255adantr 484 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → 𝐺 ∈ Grp)
26 simprl 770 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → 𝑧𝑋)
27 simprr 772 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → 𝑤𝑋)
281, 3grpcl 18103 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑧𝑋𝑤𝑋) → (𝑧(+g𝐺)𝑤) ∈ 𝑋)
2925, 26, 27, 28syl3anc 1368 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝑧(+g𝐺)𝑤) ∈ 𝑋)
306adantr 484 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → 𝑌 ∈ V)
3130mptexd 6964 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝑦𝑌 ↦ ((𝑧(+g𝐺)𝑤) 𝑦)) ∈ V)
3216, 24, 29, 31fvmptd3 6768 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹‘(𝑧(+g𝐺)𝑤)) = (𝑦𝑌 ↦ ((𝑧(+g𝐺)𝑤) 𝑦)))
3317adantr 484 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → 𝐹:𝑋⟶(Base‘𝐻))
3433, 26ffvelrnd 6829 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹𝑧) ∈ (Base‘𝐻))
3533, 27ffvelrnd 6829 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹𝑤) ∈ (Base‘𝐻))
367, 2, 4symgov 18504 . . . . 5 (((𝐹𝑧) ∈ (Base‘𝐻) ∧ (𝐹𝑤) ∈ (Base‘𝐻)) → ((𝐹𝑧)(+g𝐻)(𝐹𝑤)) = ((𝐹𝑧) ∘ (𝐹𝑤)))
3734, 35, 36syl2anc 587 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹𝑧)(+g𝐻)(𝐹𝑤)) = ((𝐹𝑧) ∘ (𝐹𝑤)))
381gaf 18417 . . . . . . 7 ( ∈ (𝐺 GrpAct 𝑌) → :(𝑋 × 𝑌)⟶𝑌)
3938ad2antrr 725 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑦𝑌) → :(𝑋 × 𝑌)⟶𝑌)
4027adantr 484 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑦𝑌) → 𝑤𝑋)
41 simpr 488 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑦𝑌) → 𝑦𝑌)
4239, 40, 41fovrnd 7300 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑦𝑌) → (𝑤 𝑦) ∈ 𝑌)
43 oveq1 7142 . . . . . . 7 (𝑥 = 𝑤 → (𝑥 𝑦) = (𝑤 𝑦))
4443mpteq2dv 5126 . . . . . 6 (𝑥 = 𝑤 → (𝑦𝑌 ↦ (𝑥 𝑦)) = (𝑦𝑌 ↦ (𝑤 𝑦)))
4530mptexd 6964 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝑦𝑌 ↦ (𝑤 𝑦)) ∈ V)
4616, 44, 27, 45fvmptd3 6768 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹𝑤) = (𝑦𝑌 ↦ (𝑤 𝑦)))
47 oveq1 7142 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 𝑦) = (𝑧 𝑦))
4847mpteq2dv 5126 . . . . . . 7 (𝑥 = 𝑧 → (𝑦𝑌 ↦ (𝑥 𝑦)) = (𝑦𝑌 ↦ (𝑧 𝑦)))
4930mptexd 6964 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝑦𝑌 ↦ (𝑧 𝑦)) ∈ V)
5016, 48, 26, 49fvmptd3 6768 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹𝑧) = (𝑦𝑌 ↦ (𝑧 𝑦)))
51 oveq2 7143 . . . . . . 7 (𝑦 = 𝑥 → (𝑧 𝑦) = (𝑧 𝑥))
5251cbvmptv 5133 . . . . . 6 (𝑦𝑌 ↦ (𝑧 𝑦)) = (𝑥𝑌 ↦ (𝑧 𝑥))
5350, 52eqtrdi 2849 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹𝑧) = (𝑥𝑌 ↦ (𝑧 𝑥)))
54 oveq2 7143 . . . . 5 (𝑥 = (𝑤 𝑦) → (𝑧 𝑥) = (𝑧 (𝑤 𝑦)))
5542, 46, 53, 54fmptco 6868 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹𝑧) ∘ (𝐹𝑤)) = (𝑦𝑌 ↦ (𝑧 (𝑤 𝑦))))
5637, 55eqtrd 2833 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹𝑧)(+g𝐻)(𝐹𝑤)) = (𝑦𝑌 ↦ (𝑧 (𝑤 𝑦))))
5722, 32, 563eqtr4d 2843 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹‘(𝑧(+g𝐺)𝑤)) = ((𝐹𝑧)(+g𝐻)(𝐹𝑤)))
581, 2, 3, 4, 5, 9, 17, 57isghmd 18359 1 ( ∈ (𝐺 GrpAct 𝑌) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  Vcvv 3441  cmpt 5110   × cxp 5517  ccom 5523  wf 6320  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  Grpcgrp 18095   GrpHom cghm 18347   GrpAct cga 18411  SymGrpcsymg 18487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-tset 16576  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-efmnd 18026  df-grp 18098  df-minusg 18099  df-ghm 18348  df-ga 18412  df-symg 18488
This theorem is referenced by:  cayleylem1  18532
  Copyright terms: Public domain W3C validator