MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  galactghm Structured version   Visualization version   GIF version

Theorem galactghm 18535
Description: The currying of a group action is a group homomorphism between the group 𝐺 and the symmetric group (SymGrp‘𝑌). (Contributed by FL, 17-May-2010.) (Proof shortened by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
galactghm.x 𝑋 = (Base‘𝐺)
galactghm.h 𝐻 = (SymGrp‘𝑌)
galactghm.f 𝐹 = (𝑥𝑋 ↦ (𝑦𝑌 ↦ (𝑥 𝑦)))
Assertion
Ref Expression
galactghm ( ∈ (𝐺 GrpAct 𝑌) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥, ,𝑦   𝑥,𝑋,𝑦   𝑥,𝐻   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐻(𝑦)

Proof of Theorem galactghm
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 galactghm.x . 2 𝑋 = (Base‘𝐺)
2 eqid 2824 . 2 (Base‘𝐻) = (Base‘𝐻)
3 eqid 2824 . 2 (+g𝐺) = (+g𝐺)
4 eqid 2824 . 2 (+g𝐻) = (+g𝐻)
5 gagrp 18425 . 2 ( ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp)
6 gaset 18426 . . 3 ( ∈ (𝐺 GrpAct 𝑌) → 𝑌 ∈ V)
7 galactghm.h . . . 4 𝐻 = (SymGrp‘𝑌)
87symggrp 18531 . . 3 (𝑌 ∈ V → 𝐻 ∈ Grp)
96, 8syl 17 . 2 ( ∈ (𝐺 GrpAct 𝑌) → 𝐻 ∈ Grp)
10 eqid 2824 . . . . 5 (𝑦𝑌 ↦ (𝑥 𝑦)) = (𝑦𝑌 ↦ (𝑥 𝑦))
111, 10gapm 18439 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑋) → (𝑦𝑌 ↦ (𝑥 𝑦)):𝑌1-1-onto𝑌)
126adantr 483 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑋) → 𝑌 ∈ V)
137, 2elsymgbas 18505 . . . . 5 (𝑌 ∈ V → ((𝑦𝑌 ↦ (𝑥 𝑦)) ∈ (Base‘𝐻) ↔ (𝑦𝑌 ↦ (𝑥 𝑦)):𝑌1-1-onto𝑌))
1412, 13syl 17 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑋) → ((𝑦𝑌 ↦ (𝑥 𝑦)) ∈ (Base‘𝐻) ↔ (𝑦𝑌 ↦ (𝑥 𝑦)):𝑌1-1-onto𝑌))
1511, 14mpbird 259 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑋) → (𝑦𝑌 ↦ (𝑥 𝑦)) ∈ (Base‘𝐻))
16 galactghm.f . . 3 𝐹 = (𝑥𝑋 ↦ (𝑦𝑌 ↦ (𝑥 𝑦)))
1715, 16fmptd 6881 . 2 ( ∈ (𝐺 GrpAct 𝑌) → 𝐹:𝑋⟶(Base‘𝐻))
18 df-3an 1085 . . . . . 6 ((𝑧𝑋𝑤𝑋𝑦𝑌) ↔ ((𝑧𝑋𝑤𝑋) ∧ 𝑦𝑌))
191, 3gaass 18430 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋𝑦𝑌)) → ((𝑧(+g𝐺)𝑤) 𝑦) = (𝑧 (𝑤 𝑦)))
2018, 19sylan2br 596 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ ((𝑧𝑋𝑤𝑋) ∧ 𝑦𝑌)) → ((𝑧(+g𝐺)𝑤) 𝑦) = (𝑧 (𝑤 𝑦)))
2120anassrs 470 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑦𝑌) → ((𝑧(+g𝐺)𝑤) 𝑦) = (𝑧 (𝑤 𝑦)))
2221mpteq2dva 5164 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝑦𝑌 ↦ ((𝑧(+g𝐺)𝑤) 𝑦)) = (𝑦𝑌 ↦ (𝑧 (𝑤 𝑦))))
23 oveq1 7166 . . . . 5 (𝑥 = (𝑧(+g𝐺)𝑤) → (𝑥 𝑦) = ((𝑧(+g𝐺)𝑤) 𝑦))
2423mpteq2dv 5165 . . . 4 (𝑥 = (𝑧(+g𝐺)𝑤) → (𝑦𝑌 ↦ (𝑥 𝑦)) = (𝑦𝑌 ↦ ((𝑧(+g𝐺)𝑤) 𝑦)))
255adantr 483 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → 𝐺 ∈ Grp)
26 simprl 769 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → 𝑧𝑋)
27 simprr 771 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → 𝑤𝑋)
281, 3grpcl 18114 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑧𝑋𝑤𝑋) → (𝑧(+g𝐺)𝑤) ∈ 𝑋)
2925, 26, 27, 28syl3anc 1367 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝑧(+g𝐺)𝑤) ∈ 𝑋)
306adantr 483 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → 𝑌 ∈ V)
3130mptexd 6990 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝑦𝑌 ↦ ((𝑧(+g𝐺)𝑤) 𝑦)) ∈ V)
3216, 24, 29, 31fvmptd3 6794 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹‘(𝑧(+g𝐺)𝑤)) = (𝑦𝑌 ↦ ((𝑧(+g𝐺)𝑤) 𝑦)))
3317adantr 483 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → 𝐹:𝑋⟶(Base‘𝐻))
3433, 26ffvelrnd 6855 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹𝑧) ∈ (Base‘𝐻))
3533, 27ffvelrnd 6855 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹𝑤) ∈ (Base‘𝐻))
367, 2, 4symgov 18515 . . . . 5 (((𝐹𝑧) ∈ (Base‘𝐻) ∧ (𝐹𝑤) ∈ (Base‘𝐻)) → ((𝐹𝑧)(+g𝐻)(𝐹𝑤)) = ((𝐹𝑧) ∘ (𝐹𝑤)))
3734, 35, 36syl2anc 586 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹𝑧)(+g𝐻)(𝐹𝑤)) = ((𝐹𝑧) ∘ (𝐹𝑤)))
381gaf 18428 . . . . . . 7 ( ∈ (𝐺 GrpAct 𝑌) → :(𝑋 × 𝑌)⟶𝑌)
3938ad2antrr 724 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑦𝑌) → :(𝑋 × 𝑌)⟶𝑌)
4027adantr 483 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑦𝑌) → 𝑤𝑋)
41 simpr 487 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑦𝑌) → 𝑦𝑌)
4239, 40, 41fovrnd 7323 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑦𝑌) → (𝑤 𝑦) ∈ 𝑌)
43 oveq1 7166 . . . . . . 7 (𝑥 = 𝑤 → (𝑥 𝑦) = (𝑤 𝑦))
4443mpteq2dv 5165 . . . . . 6 (𝑥 = 𝑤 → (𝑦𝑌 ↦ (𝑥 𝑦)) = (𝑦𝑌 ↦ (𝑤 𝑦)))
4530mptexd 6990 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝑦𝑌 ↦ (𝑤 𝑦)) ∈ V)
4616, 44, 27, 45fvmptd3 6794 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹𝑤) = (𝑦𝑌 ↦ (𝑤 𝑦)))
47 oveq1 7166 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 𝑦) = (𝑧 𝑦))
4847mpteq2dv 5165 . . . . . . 7 (𝑥 = 𝑧 → (𝑦𝑌 ↦ (𝑥 𝑦)) = (𝑦𝑌 ↦ (𝑧 𝑦)))
4930mptexd 6990 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝑦𝑌 ↦ (𝑧 𝑦)) ∈ V)
5016, 48, 26, 49fvmptd3 6794 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹𝑧) = (𝑦𝑌 ↦ (𝑧 𝑦)))
51 oveq2 7167 . . . . . . 7 (𝑦 = 𝑥 → (𝑧 𝑦) = (𝑧 𝑥))
5251cbvmptv 5172 . . . . . 6 (𝑦𝑌 ↦ (𝑧 𝑦)) = (𝑥𝑌 ↦ (𝑧 𝑥))
5350, 52syl6eq 2875 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹𝑧) = (𝑥𝑌 ↦ (𝑧 𝑥)))
54 oveq2 7167 . . . . 5 (𝑥 = (𝑤 𝑦) → (𝑧 𝑥) = (𝑧 (𝑤 𝑦)))
5542, 46, 53, 54fmptco 6894 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹𝑧) ∘ (𝐹𝑤)) = (𝑦𝑌 ↦ (𝑧 (𝑤 𝑦))))
5637, 55eqtrd 2859 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹𝑧)(+g𝐻)(𝐹𝑤)) = (𝑦𝑌 ↦ (𝑧 (𝑤 𝑦))))
5722, 32, 563eqtr4d 2869 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹‘(𝑧(+g𝐺)𝑤)) = ((𝐹𝑧)(+g𝐻)(𝐹𝑤)))
581, 2, 3, 4, 5, 9, 17, 57isghmd 18370 1 ( ∈ (𝐺 GrpAct 𝑌) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  Vcvv 3497  cmpt 5149   × cxp 5556  ccom 5562  wf 6354  1-1-ontowf1o 6357  cfv 6358  (class class class)co 7159  Basecbs 16486  +gcplusg 16568  Grpcgrp 18106   GrpHom cghm 18358   GrpAct cga 18422  SymGrpcsymg 18498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-tset 16587  df-0g 16718  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-efmnd 18037  df-grp 18109  df-minusg 18110  df-ghm 18359  df-ga 18423  df-symg 18499
This theorem is referenced by:  cayleylem1  18543
  Copyright terms: Public domain W3C validator