| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gagrpid | Structured version Visualization version GIF version | ||
| Description: The identity of the group does not alter the base set. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.) |
| Ref | Expression |
|---|---|
| gagrpid.1 | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| gagrpid | ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → ( 0 ⊕ 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2731 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | gagrpid.1 | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
| 4 | 1, 2, 3 | isga 19203 | . . . 4 ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) ↔ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) ∧ ( ⊕ :((Base‘𝐺) × 𝑌)⟶𝑌 ∧ ∀𝑥 ∈ 𝑌 (( 0 ⊕ 𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥)))))) |
| 5 | 4 | simprbi 496 | . . 3 ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → ( ⊕ :((Base‘𝐺) × 𝑌)⟶𝑌 ∧ ∀𝑥 ∈ 𝑌 (( 0 ⊕ 𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥))))) |
| 6 | simpl 482 | . . . 4 ⊢ ((( 0 ⊕ 𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥))) → ( 0 ⊕ 𝑥) = 𝑥) | |
| 7 | 6 | ralimi 3069 | . . 3 ⊢ (∀𝑥 ∈ 𝑌 (( 0 ⊕ 𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥))) → ∀𝑥 ∈ 𝑌 ( 0 ⊕ 𝑥) = 𝑥) |
| 8 | 5, 7 | simpl2im 503 | . 2 ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → ∀𝑥 ∈ 𝑌 ( 0 ⊕ 𝑥) = 𝑥) |
| 9 | oveq2 7354 | . . . 4 ⊢ (𝑥 = 𝐴 → ( 0 ⊕ 𝑥) = ( 0 ⊕ 𝐴)) | |
| 10 | id 22 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 11 | 9, 10 | eqeq12d 2747 | . . 3 ⊢ (𝑥 = 𝐴 → (( 0 ⊕ 𝑥) = 𝑥 ↔ ( 0 ⊕ 𝐴) = 𝐴)) |
| 12 | 11 | rspccva 3571 | . 2 ⊢ ((∀𝑥 ∈ 𝑌 ( 0 ⊕ 𝑥) = 𝑥 ∧ 𝐴 ∈ 𝑌) → ( 0 ⊕ 𝐴) = 𝐴) |
| 13 | 8, 12 | sylan 580 | 1 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → ( 0 ⊕ 𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 × cxp 5612 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 +gcplusg 17161 0gc0g 17343 Grpcgrp 18846 GrpAct cga 19201 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-ga 19202 |
| This theorem is referenced by: gafo 19208 gass 19213 gasubg 19214 galcan 19216 gacan 19217 gaorber 19220 gastacl 19221 |
| Copyright terms: Public domain | W3C validator |