| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gagrpid | Structured version Visualization version GIF version | ||
| Description: The identity of the group does not alter the base set. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.) |
| Ref | Expression |
|---|---|
| gagrpid.1 | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| gagrpid | ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → ( 0 ⊕ 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2729 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | gagrpid.1 | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
| 4 | 1, 2, 3 | isga 19223 | . . . 4 ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) ↔ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) ∧ ( ⊕ :((Base‘𝐺) × 𝑌)⟶𝑌 ∧ ∀𝑥 ∈ 𝑌 (( 0 ⊕ 𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥)))))) |
| 5 | 4 | simprbi 496 | . . 3 ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → ( ⊕ :((Base‘𝐺) × 𝑌)⟶𝑌 ∧ ∀𝑥 ∈ 𝑌 (( 0 ⊕ 𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥))))) |
| 6 | simpl 482 | . . . 4 ⊢ ((( 0 ⊕ 𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥))) → ( 0 ⊕ 𝑥) = 𝑥) | |
| 7 | 6 | ralimi 3066 | . . 3 ⊢ (∀𝑥 ∈ 𝑌 (( 0 ⊕ 𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥))) → ∀𝑥 ∈ 𝑌 ( 0 ⊕ 𝑥) = 𝑥) |
| 8 | 5, 7 | simpl2im 503 | . 2 ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → ∀𝑥 ∈ 𝑌 ( 0 ⊕ 𝑥) = 𝑥) |
| 9 | oveq2 7395 | . . . 4 ⊢ (𝑥 = 𝐴 → ( 0 ⊕ 𝑥) = ( 0 ⊕ 𝐴)) | |
| 10 | id 22 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 11 | 9, 10 | eqeq12d 2745 | . . 3 ⊢ (𝑥 = 𝐴 → (( 0 ⊕ 𝑥) = 𝑥 ↔ ( 0 ⊕ 𝐴) = 𝐴)) |
| 12 | 11 | rspccva 3587 | . 2 ⊢ ((∀𝑥 ∈ 𝑌 ( 0 ⊕ 𝑥) = 𝑥 ∧ 𝐴 ∈ 𝑌) → ( 0 ⊕ 𝐴) = 𝐴) |
| 13 | 8, 12 | sylan 580 | 1 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → ( 0 ⊕ 𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 × cxp 5636 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 0gc0g 17402 Grpcgrp 18865 GrpAct cga 19221 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-ga 19222 |
| This theorem is referenced by: gafo 19228 gass 19233 gasubg 19234 galcan 19236 gacan 19237 gaorber 19240 gastacl 19241 |
| Copyright terms: Public domain | W3C validator |