MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gagrpid Structured version   Visualization version   GIF version

Theorem gagrpid 19226
Description: The identity of the group does not alter the base set. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypothesis
Ref Expression
gagrpid.1 0 = (0g𝐺)
Assertion
Ref Expression
gagrpid (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → ( 0 𝐴) = 𝐴)

Proof of Theorem gagrpid
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2729 . . . . 5 (+g𝐺) = (+g𝐺)
3 gagrpid.1 . . . . 5 0 = (0g𝐺)
41, 2, 3isga 19223 . . . 4 ( ∈ (𝐺 GrpAct 𝑌) ↔ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) ∧ ( :((Base‘𝐺) × 𝑌)⟶𝑌 ∧ ∀𝑥𝑌 (( 0 𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g𝐺)𝑧) 𝑥) = (𝑦 (𝑧 𝑥))))))
54simprbi 496 . . 3 ( ∈ (𝐺 GrpAct 𝑌) → ( :((Base‘𝐺) × 𝑌)⟶𝑌 ∧ ∀𝑥𝑌 (( 0 𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g𝐺)𝑧) 𝑥) = (𝑦 (𝑧 𝑥)))))
6 simpl 482 . . . 4 ((( 0 𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g𝐺)𝑧) 𝑥) = (𝑦 (𝑧 𝑥))) → ( 0 𝑥) = 𝑥)
76ralimi 3066 . . 3 (∀𝑥𝑌 (( 0 𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g𝐺)𝑧) 𝑥) = (𝑦 (𝑧 𝑥))) → ∀𝑥𝑌 ( 0 𝑥) = 𝑥)
85, 7simpl2im 503 . 2 ( ∈ (𝐺 GrpAct 𝑌) → ∀𝑥𝑌 ( 0 𝑥) = 𝑥)
9 oveq2 7395 . . . 4 (𝑥 = 𝐴 → ( 0 𝑥) = ( 0 𝐴))
10 id 22 . . . 4 (𝑥 = 𝐴𝑥 = 𝐴)
119, 10eqeq12d 2745 . . 3 (𝑥 = 𝐴 → (( 0 𝑥) = 𝑥 ↔ ( 0 𝐴) = 𝐴))
1211rspccva 3587 . 2 ((∀𝑥𝑌 ( 0 𝑥) = 𝑥𝐴𝑌) → ( 0 𝐴) = 𝐴)
138, 12sylan 580 1 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → ( 0 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447   × cxp 5636  wf 6507  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  0gc0g 17402  Grpcgrp 18865   GrpAct cga 19221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-ga 19222
This theorem is referenced by:  gafo  19228  gass  19233  gasubg  19234  galcan  19236  gacan  19237  gaorber  19240  gastacl  19241
  Copyright terms: Public domain W3C validator