MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gagrpid Structured version   Visualization version   GIF version

Theorem gagrpid 19325
Description: The identity of the group does not alter the base set. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypothesis
Ref Expression
gagrpid.1 0 = (0g𝐺)
Assertion
Ref Expression
gagrpid (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → ( 0 𝐴) = 𝐴)

Proof of Theorem gagrpid
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2735 . . . . 5 (+g𝐺) = (+g𝐺)
3 gagrpid.1 . . . . 5 0 = (0g𝐺)
41, 2, 3isga 19322 . . . 4 ( ∈ (𝐺 GrpAct 𝑌) ↔ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) ∧ ( :((Base‘𝐺) × 𝑌)⟶𝑌 ∧ ∀𝑥𝑌 (( 0 𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g𝐺)𝑧) 𝑥) = (𝑦 (𝑧 𝑥))))))
54simprbi 496 . . 3 ( ∈ (𝐺 GrpAct 𝑌) → ( :((Base‘𝐺) × 𝑌)⟶𝑌 ∧ ∀𝑥𝑌 (( 0 𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g𝐺)𝑧) 𝑥) = (𝑦 (𝑧 𝑥)))))
6 simpl 482 . . . 4 ((( 0 𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g𝐺)𝑧) 𝑥) = (𝑦 (𝑧 𝑥))) → ( 0 𝑥) = 𝑥)
76ralimi 3081 . . 3 (∀𝑥𝑌 (( 0 𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g𝐺)𝑧) 𝑥) = (𝑦 (𝑧 𝑥))) → ∀𝑥𝑌 ( 0 𝑥) = 𝑥)
85, 7simpl2im 503 . 2 ( ∈ (𝐺 GrpAct 𝑌) → ∀𝑥𝑌 ( 0 𝑥) = 𝑥)
9 oveq2 7439 . . . 4 (𝑥 = 𝐴 → ( 0 𝑥) = ( 0 𝐴))
10 id 22 . . . 4 (𝑥 = 𝐴𝑥 = 𝐴)
119, 10eqeq12d 2751 . . 3 (𝑥 = 𝐴 → (( 0 𝑥) = 𝑥 ↔ ( 0 𝐴) = 𝐴))
1211rspccva 3621 . 2 ((∀𝑥𝑌 ( 0 𝑥) = 𝑥𝐴𝑌) → ( 0 𝐴) = 𝐴)
138, 12sylan 580 1 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → ( 0 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478   × cxp 5687  wf 6559  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  0gc0g 17486  Grpcgrp 18964   GrpAct cga 19320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867  df-ga 19321
This theorem is referenced by:  gafo  19327  gass  19332  gasubg  19333  galcan  19335  gacan  19336  gaorber  19339  gastacl  19340
  Copyright terms: Public domain W3C validator