| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gagrpid | Structured version Visualization version GIF version | ||
| Description: The identity of the group does not alter the base set. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.) |
| Ref | Expression |
|---|---|
| gagrpid.1 | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| gagrpid | ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → ( 0 ⊕ 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2734 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | gagrpid.1 | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
| 4 | 1, 2, 3 | isga 19278 | . . . 4 ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) ↔ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) ∧ ( ⊕ :((Base‘𝐺) × 𝑌)⟶𝑌 ∧ ∀𝑥 ∈ 𝑌 (( 0 ⊕ 𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥)))))) |
| 5 | 4 | simprbi 496 | . . 3 ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → ( ⊕ :((Base‘𝐺) × 𝑌)⟶𝑌 ∧ ∀𝑥 ∈ 𝑌 (( 0 ⊕ 𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥))))) |
| 6 | simpl 482 | . . . 4 ⊢ ((( 0 ⊕ 𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥))) → ( 0 ⊕ 𝑥) = 𝑥) | |
| 7 | 6 | ralimi 3072 | . . 3 ⊢ (∀𝑥 ∈ 𝑌 (( 0 ⊕ 𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥))) → ∀𝑥 ∈ 𝑌 ( 0 ⊕ 𝑥) = 𝑥) |
| 8 | 5, 7 | simpl2im 503 | . 2 ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → ∀𝑥 ∈ 𝑌 ( 0 ⊕ 𝑥) = 𝑥) |
| 9 | oveq2 7421 | . . . 4 ⊢ (𝑥 = 𝐴 → ( 0 ⊕ 𝑥) = ( 0 ⊕ 𝐴)) | |
| 10 | id 22 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 11 | 9, 10 | eqeq12d 2750 | . . 3 ⊢ (𝑥 = 𝐴 → (( 0 ⊕ 𝑥) = 𝑥 ↔ ( 0 ⊕ 𝐴) = 𝐴)) |
| 12 | 11 | rspccva 3604 | . 2 ⊢ ((∀𝑥 ∈ 𝑌 ( 0 ⊕ 𝑥) = 𝑥 ∧ 𝐴 ∈ 𝑌) → ( 0 ⊕ 𝐴) = 𝐴) |
| 13 | 8, 12 | sylan 580 | 1 ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → ( 0 ⊕ 𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 Vcvv 3463 × cxp 5663 ⟶wf 6537 ‘cfv 6541 (class class class)co 7413 Basecbs 17229 +gcplusg 17273 0gc0g 17455 Grpcgrp 18920 GrpAct cga 19276 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-map 8850 df-ga 19277 |
| This theorem is referenced by: gafo 19283 gass 19288 gasubg 19289 galcan 19291 gacan 19292 gaorber 19295 gastacl 19296 |
| Copyright terms: Public domain | W3C validator |