MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gagrpid Structured version   Visualization version   GIF version

Theorem gagrpid 19257
Description: The identity of the group does not alter the base set. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypothesis
Ref Expression
gagrpid.1 0 = (0g𝐺)
Assertion
Ref Expression
gagrpid (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → ( 0 𝐴) = 𝐴)

Proof of Theorem gagrpid
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2725 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2725 . . . . 5 (+g𝐺) = (+g𝐺)
3 gagrpid.1 . . . . 5 0 = (0g𝐺)
41, 2, 3isga 19254 . . . 4 ( ∈ (𝐺 GrpAct 𝑌) ↔ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) ∧ ( :((Base‘𝐺) × 𝑌)⟶𝑌 ∧ ∀𝑥𝑌 (( 0 𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g𝐺)𝑧) 𝑥) = (𝑦 (𝑧 𝑥))))))
54simprbi 495 . . 3 ( ∈ (𝐺 GrpAct 𝑌) → ( :((Base‘𝐺) × 𝑌)⟶𝑌 ∧ ∀𝑥𝑌 (( 0 𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g𝐺)𝑧) 𝑥) = (𝑦 (𝑧 𝑥)))))
6 simpl 481 . . . 4 ((( 0 𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g𝐺)𝑧) 𝑥) = (𝑦 (𝑧 𝑥))) → ( 0 𝑥) = 𝑥)
76ralimi 3072 . . 3 (∀𝑥𝑌 (( 0 𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g𝐺)𝑧) 𝑥) = (𝑦 (𝑧 𝑥))) → ∀𝑥𝑌 ( 0 𝑥) = 𝑥)
85, 7simpl2im 502 . 2 ( ∈ (𝐺 GrpAct 𝑌) → ∀𝑥𝑌 ( 0 𝑥) = 𝑥)
9 oveq2 7427 . . . 4 (𝑥 = 𝐴 → ( 0 𝑥) = ( 0 𝐴))
10 id 22 . . . 4 (𝑥 = 𝐴𝑥 = 𝐴)
119, 10eqeq12d 2741 . . 3 (𝑥 = 𝐴 → (( 0 𝑥) = 𝑥 ↔ ( 0 𝐴) = 𝐴))
1211rspccva 3605 . 2 ((∀𝑥𝑌 ( 0 𝑥) = 𝑥𝐴𝑌) → ( 0 𝐴) = 𝐴)
138, 12sylan 578 1 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → ( 0 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wral 3050  Vcvv 3461   × cxp 5676  wf 6545  cfv 6549  (class class class)co 7419  Basecbs 17183  +gcplusg 17236  0gc0g 17424  Grpcgrp 18898   GrpAct cga 19252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-map 8847  df-ga 19253
This theorem is referenced by:  gafo  19259  gass  19264  gasubg  19265  galcan  19267  gacan  19268  gaorber  19271  gastacl  19272
  Copyright terms: Public domain W3C validator