|   | Mathbox for Alexander van der Vekens | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > grlimf1o | Structured version Visualization version GIF version | ||
| Description: A local isomorphism of graphs is a bijection between their vertices. (Contributed by AV, 21-May-2025.) | 
| Ref | Expression | 
|---|---|
| grlimprop.v | ⊢ 𝑉 = (Vtx‘𝐺) | 
| grlimprop.w | ⊢ 𝑊 = (Vtx‘𝐻) | 
| Ref | Expression | 
|---|---|
| grlimf1o | ⊢ (𝐹 ∈ (𝐺 GraphLocIso 𝐻) → 𝐹:𝑉–1-1-onto→𝑊) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | grlimprop.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | grlimprop.w | . . 3 ⊢ 𝑊 = (Vtx‘𝐻) | |
| 3 | 1, 2 | grlimprop 47951 | . 2 ⊢ (𝐹 ∈ (𝐺 GraphLocIso 𝐻) → (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑣))))) | 
| 4 | 3 | simpld 494 | 1 ⊢ (𝐹 ∈ (𝐺 GraphLocIso 𝐻) → 𝐹:𝑉–1-1-onto→𝑊) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∀wral 3061 class class class wbr 5143 –1-1-onto→wf1o 6560 ‘cfv 6561 (class class class)co 7431 Vtxcvtx 29013 ClNeighbVtx cclnbgr 47805 ISubGr cisubgr 47846 ≃𝑔𝑟 cgric 47862 GraphLocIso cgrlim 47943 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-grlim 47945 | 
| This theorem is referenced by: grlicen 47977 | 
| Copyright terms: Public domain | W3C validator |