Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grlimf1o Structured version   Visualization version   GIF version

Theorem grlimf1o 47964
Description: A local isomorphism of graphs is a bijection between their vertices. (Contributed by AV, 21-May-2025.)
Hypotheses
Ref Expression
grlimprop.v 𝑉 = (Vtx‘𝐺)
grlimprop.w 𝑊 = (Vtx‘𝐻)
Assertion
Ref Expression
grlimf1o (𝐹 ∈ (𝐺 GraphLocIso 𝐻) → 𝐹:𝑉1-1-onto𝑊)

Proof of Theorem grlimf1o
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 grlimprop.v . . 3 𝑉 = (Vtx‘𝐺)
2 grlimprop.w . . 3 𝑊 = (Vtx‘𝐻)
31, 2grlimprop 47963 . 2 (𝐹 ∈ (𝐺 GraphLocIso 𝐻) → (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑣)))))
43simpld 494 1 (𝐹 ∈ (𝐺 GraphLocIso 𝐻) → 𝐹:𝑉1-1-onto𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3052   class class class wbr 5124  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  Vtxcvtx 28980   ClNeighbVtx cclnbgr 47799   ISubGr cisubgr 47840  𝑔𝑟 cgric 47856   GraphLocIso cgrlim 47955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-grlim 47957
This theorem is referenced by:  grlicen  47989
  Copyright terms: Public domain W3C validator