Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grlimf1o Structured version   Visualization version   GIF version

Theorem grlimf1o 48015
Description: A local isomorphism of graphs is a bijection between their vertices. (Contributed by AV, 21-May-2025.)
Hypotheses
Ref Expression
grlimprop.v 𝑉 = (Vtx‘𝐺)
grlimprop.w 𝑊 = (Vtx‘𝐻)
Assertion
Ref Expression
grlimf1o (𝐹 ∈ (𝐺 GraphLocIso 𝐻) → 𝐹:𝑉1-1-onto𝑊)

Proof of Theorem grlimf1o
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 grlimprop.v . . 3 𝑉 = (Vtx‘𝐺)
2 grlimprop.w . . 3 𝑊 = (Vtx‘𝐻)
31, 2grlimprop 48014 . 2 (𝐹 ∈ (𝐺 GraphLocIso 𝐻) → (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑣)))))
43simpld 494 1 (𝐹 ∈ (𝐺 GraphLocIso 𝐻) → 𝐹:𝑉1-1-onto𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wral 3047   class class class wbr 5091  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  Vtxcvtx 28972   ClNeighbVtx cclnbgr 47848   ISubGr cisubgr 47890  𝑔𝑟 cgric 47906   GraphLocIso cgrlim 48006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-grlim 48008
This theorem is referenced by:  grlicen  48047
  Copyright terms: Public domain W3C validator