Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grlimf1o Structured version   Visualization version   GIF version

Theorem grlimf1o 47988
Description: A local isomorphism of graphs is a bijection between their vertices. (Contributed by AV, 21-May-2025.)
Hypotheses
Ref Expression
grlimprop.v 𝑉 = (Vtx‘𝐺)
grlimprop.w 𝑊 = (Vtx‘𝐻)
Assertion
Ref Expression
grlimf1o (𝐹 ∈ (𝐺 GraphLocIso 𝐻) → 𝐹:𝑉1-1-onto𝑊)

Proof of Theorem grlimf1o
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 grlimprop.v . . 3 𝑉 = (Vtx‘𝐺)
2 grlimprop.w . . 3 𝑊 = (Vtx‘𝐻)
31, 2grlimprop 47987 . 2 (𝐹 ∈ (𝐺 GraphLocIso 𝐻) → (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹𝑣)))))
43simpld 494 1 (𝐹 ∈ (𝐺 GraphLocIso 𝐻) → 𝐹:𝑉1-1-onto𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3045   class class class wbr 5110  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  Vtxcvtx 28930   ClNeighbVtx cclnbgr 47823   ISubGr cisubgr 47864  𝑔𝑟 cgric 47880   GraphLocIso cgrlim 47979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-grlim 47981
This theorem is referenced by:  grlicen  48013
  Copyright terms: Public domain W3C validator