Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grlicen Structured version   Visualization version   GIF version

Theorem grlicen 48009
Description: Locally isomorphic graphs have equinumerous sets of vertices. (Contributed by AV, 11-Jun-2025.)
Hypotheses
Ref Expression
grlicen.b 𝐵 = (Vtx‘𝑅)
grlicen.c 𝐶 = (Vtx‘𝑆)
Assertion
Ref Expression
grlicen (𝑅𝑙𝑔𝑟 𝑆𝐵𝐶)

Proof of Theorem grlicen
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brgrlic 47996 . 2 (𝑅𝑙𝑔𝑟 𝑆 ↔ (𝑅 GraphLocIso 𝑆) ≠ ∅)
2 n0 4316 . . 3 ((𝑅 GraphLocIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 GraphLocIso 𝑆))
3 grlicen.b . . . . . 6 𝐵 = (Vtx‘𝑅)
4 grlicen.c . . . . . 6 𝐶 = (Vtx‘𝑆)
53, 4grlimf1o 47984 . . . . 5 (𝑓 ∈ (𝑅 GraphLocIso 𝑆) → 𝑓:𝐵1-1-onto𝐶)
63fvexi 6872 . . . . . 6 𝐵 ∈ V
76f1oen 8944 . . . . 5 (𝑓:𝐵1-1-onto𝐶𝐵𝐶)
85, 7syl 17 . . . 4 (𝑓 ∈ (𝑅 GraphLocIso 𝑆) → 𝐵𝐶)
98exlimiv 1930 . . 3 (∃𝑓 𝑓 ∈ (𝑅 GraphLocIso 𝑆) → 𝐵𝐶)
102, 9sylbi 217 . 2 ((𝑅 GraphLocIso 𝑆) ≠ ∅ → 𝐵𝐶)
111, 10sylbi 217 1 (𝑅𝑙𝑔𝑟 𝑆𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wex 1779  wcel 2109  wne 2925  c0 4296   class class class wbr 5107  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  cen 8915  Vtxcvtx 28923   GraphLocIso cgrlim 47975  𝑙𝑔𝑟 cgrlic 47976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-1o 8434  df-en 8919  df-grlim 47977  df-grlic 47980
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator