Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grlicen Structured version   Visualization version   GIF version

Theorem grlicen 48141
Description: Locally isomorphic graphs have equinumerous sets of vertices. (Contributed by AV, 11-Jun-2025.)
Hypotheses
Ref Expression
grlicen.b 𝐵 = (Vtx‘𝑅)
grlicen.c 𝐶 = (Vtx‘𝑆)
Assertion
Ref Expression
grlicen (𝑅𝑙𝑔𝑟 𝑆𝐵𝐶)

Proof of Theorem grlicen
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brgrlic 48128 . 2 (𝑅𝑙𝑔𝑟 𝑆 ↔ (𝑅 GraphLocIso 𝑆) ≠ ∅)
2 n0 4302 . . 3 ((𝑅 GraphLocIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 GraphLocIso 𝑆))
3 grlicen.b . . . . . 6 𝐵 = (Vtx‘𝑅)
4 grlicen.c . . . . . 6 𝐶 = (Vtx‘𝑆)
53, 4grlimf1o 48109 . . . . 5 (𝑓 ∈ (𝑅 GraphLocIso 𝑆) → 𝑓:𝐵1-1-onto𝐶)
63fvexi 6842 . . . . . 6 𝐵 ∈ V
76f1oen 8901 . . . . 5 (𝑓:𝐵1-1-onto𝐶𝐵𝐶)
85, 7syl 17 . . . 4 (𝑓 ∈ (𝑅 GraphLocIso 𝑆) → 𝐵𝐶)
98exlimiv 1931 . . 3 (∃𝑓 𝑓 ∈ (𝑅 GraphLocIso 𝑆) → 𝐵𝐶)
102, 9sylbi 217 . 2 ((𝑅 GraphLocIso 𝑆) ≠ ∅ → 𝐵𝐶)
111, 10sylbi 217 1 (𝑅𝑙𝑔𝑟 𝑆𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wex 1780  wcel 2113  wne 2929  c0 4282   class class class wbr 5093  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7352  cen 8872  Vtxcvtx 28976   GraphLocIso cgrlim 48100  𝑙𝑔𝑟 cgrlic 48101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-1o 8391  df-en 8876  df-grlim 48102  df-grlic 48105
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator