| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > grlicen | Structured version Visualization version GIF version | ||
| Description: Locally isomorphic graphs have equinumerous sets of vertices. (Contributed by AV, 11-Jun-2025.) |
| Ref | Expression |
|---|---|
| grlicen.b | ⊢ 𝐵 = (Vtx‘𝑅) |
| grlicen.c | ⊢ 𝐶 = (Vtx‘𝑆) |
| Ref | Expression |
|---|---|
| grlicen | ⊢ (𝑅 ≃𝑙𝑔𝑟 𝑆 → 𝐵 ≈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brgrlic 48000 | . 2 ⊢ (𝑅 ≃𝑙𝑔𝑟 𝑆 ↔ (𝑅 GraphLocIso 𝑆) ≠ ∅) | |
| 2 | n0 4319 | . . 3 ⊢ ((𝑅 GraphLocIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 GraphLocIso 𝑆)) | |
| 3 | grlicen.b | . . . . . 6 ⊢ 𝐵 = (Vtx‘𝑅) | |
| 4 | grlicen.c | . . . . . 6 ⊢ 𝐶 = (Vtx‘𝑆) | |
| 5 | 3, 4 | grlimf1o 47988 | . . . . 5 ⊢ (𝑓 ∈ (𝑅 GraphLocIso 𝑆) → 𝑓:𝐵–1-1-onto→𝐶) |
| 6 | 3 | fvexi 6875 | . . . . . 6 ⊢ 𝐵 ∈ V |
| 7 | 6 | f1oen 8947 | . . . . 5 ⊢ (𝑓:𝐵–1-1-onto→𝐶 → 𝐵 ≈ 𝐶) |
| 8 | 5, 7 | syl 17 | . . . 4 ⊢ (𝑓 ∈ (𝑅 GraphLocIso 𝑆) → 𝐵 ≈ 𝐶) |
| 9 | 8 | exlimiv 1930 | . . 3 ⊢ (∃𝑓 𝑓 ∈ (𝑅 GraphLocIso 𝑆) → 𝐵 ≈ 𝐶) |
| 10 | 2, 9 | sylbi 217 | . 2 ⊢ ((𝑅 GraphLocIso 𝑆) ≠ ∅ → 𝐵 ≈ 𝐶) |
| 11 | 1, 10 | sylbi 217 | 1 ⊢ (𝑅 ≃𝑙𝑔𝑟 𝑆 → 𝐵 ≈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2926 ∅c0 4299 class class class wbr 5110 –1-1-onto→wf1o 6513 ‘cfv 6514 (class class class)co 7390 ≈ cen 8918 Vtxcvtx 28930 GraphLocIso cgrlim 47979 ≃𝑙𝑔𝑟 cgrlic 47980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-1o 8437 df-en 8922 df-grlim 47981 df-grlic 47984 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |