Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grlimgrtrilem2 Structured version   Visualization version   GIF version

Theorem grlimgrtrilem2 47809
Description: Lemma 3 for grlimgrtri 47810. (Contributed by AV, 23-Aug-2025.)
Hypotheses
Ref Expression
grlimgrtrilem1.v 𝑉 = (Vtx‘𝐺)
grlimgrtrilem1.n 𝑁 = (𝐺 ClNeighbVtx 𝑎)
grlimgrtrilem1.i 𝐼 = (Edg‘𝐺)
grlimgrtrilem1.k 𝐾 = {𝑥𝐼𝑥𝑁}
grlimgrtrilem2.m 𝑀 = (𝐻 ClNeighbVtx (𝐹𝑎))
grlimgrtrilem2.j 𝐽 = (Edg‘𝐻)
grlimgrtrilem2.l 𝐿 = {𝑥𝐽𝑥𝑀}
Assertion
Ref Expression
grlimgrtrilem2 (((𝑓:𝑁1-1-onto𝑀𝑔:𝐾1-1-onto𝐿) ∧ ∀𝑖𝐾 (𝑓𝑖) = (𝑔𝑖) ∧ {𝑏, 𝑐} ∈ 𝐾) → {(𝑓𝑏), (𝑓𝑐)} ∈ 𝐽)
Distinct variable groups:   𝑥,𝐼   𝑥,𝑁   𝑥,𝑎   𝑥,𝑏   𝑥,𝑐   𝑥,𝐽   𝑖,𝐾   𝑖,𝑏   𝑖,𝑐   𝑓,𝑖   𝑔,𝑖
Allowed substitution hints:   𝐹(𝑥,𝑓,𝑔,𝑖,𝑎,𝑏,𝑐)   𝐺(𝑥,𝑓,𝑔,𝑖,𝑎,𝑏,𝑐)   𝐻(𝑥,𝑓,𝑔,𝑖,𝑎,𝑏,𝑐)   𝐼(𝑓,𝑔,𝑖,𝑎,𝑏,𝑐)   𝐽(𝑓,𝑔,𝑖,𝑎,𝑏,𝑐)   𝐾(𝑥,𝑓,𝑔,𝑎,𝑏,𝑐)   𝐿(𝑥,𝑓,𝑔,𝑖,𝑎,𝑏,𝑐)   𝑀(𝑥,𝑓,𝑔,𝑖,𝑎,𝑏,𝑐)   𝑁(𝑓,𝑔,𝑖,𝑎,𝑏,𝑐)   𝑉(𝑥,𝑓,𝑔,𝑖,𝑎,𝑏,𝑐)

Proof of Theorem grlimgrtrilem2
StepHypRef Expression
1 imaeq2 6080 . . . . 5 (𝑖 = {𝑏, 𝑐} → (𝑓𝑖) = (𝑓 “ {𝑏, 𝑐}))
2 fveq2 6915 . . . . 5 (𝑖 = {𝑏, 𝑐} → (𝑔𝑖) = (𝑔‘{𝑏, 𝑐}))
31, 2eqeq12d 2756 . . . 4 (𝑖 = {𝑏, 𝑐} → ((𝑓𝑖) = (𝑔𝑖) ↔ (𝑓 “ {𝑏, 𝑐}) = (𝑔‘{𝑏, 𝑐})))
43rspcv 3631 . . 3 ({𝑏, 𝑐} ∈ 𝐾 → (∀𝑖𝐾 (𝑓𝑖) = (𝑔𝑖) → (𝑓 “ {𝑏, 𝑐}) = (𝑔‘{𝑏, 𝑐})))
5 f1ofn 6858 . . . . . . . . . 10 (𝑓:𝑁1-1-onto𝑀𝑓 Fn 𝑁)
65adantr 480 . . . . . . . . 9 ((𝑓:𝑁1-1-onto𝑀𝑔:𝐾1-1-onto𝐿) → 𝑓 Fn 𝑁)
76adantl 481 . . . . . . . 8 (({𝑏, 𝑐} ∈ 𝐾 ∧ (𝑓:𝑁1-1-onto𝑀𝑔:𝐾1-1-onto𝐿)) → 𝑓 Fn 𝑁)
8 grlimgrtrilem1.k . . . . . . . . . . . 12 𝐾 = {𝑥𝐼𝑥𝑁}
98eleq2i 2836 . . . . . . . . . . 11 ({𝑏, 𝑐} ∈ 𝐾 ↔ {𝑏, 𝑐} ∈ {𝑥𝐼𝑥𝑁})
10 sseq1 4034 . . . . . . . . . . . 12 (𝑥 = {𝑏, 𝑐} → (𝑥𝑁 ↔ {𝑏, 𝑐} ⊆ 𝑁))
1110elrab 3708 . . . . . . . . . . 11 ({𝑏, 𝑐} ∈ {𝑥𝐼𝑥𝑁} ↔ ({𝑏, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ⊆ 𝑁))
129, 11bitri 275 . . . . . . . . . 10 ({𝑏, 𝑐} ∈ 𝐾 ↔ ({𝑏, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ⊆ 𝑁))
13 vex 3492 . . . . . . . . . . . 12 𝑏 ∈ V
14 vex 3492 . . . . . . . . . . . 12 𝑐 ∈ V
1513, 14prss 4845 . . . . . . . . . . 11 ((𝑏𝑁𝑐𝑁) ↔ {𝑏, 𝑐} ⊆ 𝑁)
16 simpl 482 . . . . . . . . . . 11 ((𝑏𝑁𝑐𝑁) → 𝑏𝑁)
1715, 16sylbir 235 . . . . . . . . . 10 ({𝑏, 𝑐} ⊆ 𝑁𝑏𝑁)
1812, 17simplbiim 504 . . . . . . . . 9 ({𝑏, 𝑐} ∈ 𝐾𝑏𝑁)
1918adantr 480 . . . . . . . 8 (({𝑏, 𝑐} ∈ 𝐾 ∧ (𝑓:𝑁1-1-onto𝑀𝑔:𝐾1-1-onto𝐿)) → 𝑏𝑁)
20 simpr 484 . . . . . . . . . . 11 ((𝑏𝑁𝑐𝑁) → 𝑐𝑁)
2115, 20sylbir 235 . . . . . . . . . 10 ({𝑏, 𝑐} ⊆ 𝑁𝑐𝑁)
2212, 21simplbiim 504 . . . . . . . . 9 ({𝑏, 𝑐} ∈ 𝐾𝑐𝑁)
2322adantr 480 . . . . . . . 8 (({𝑏, 𝑐} ∈ 𝐾 ∧ (𝑓:𝑁1-1-onto𝑀𝑔:𝐾1-1-onto𝐿)) → 𝑐𝑁)
24 fnimapr 7000 . . . . . . . 8 ((𝑓 Fn 𝑁𝑏𝑁𝑐𝑁) → (𝑓 “ {𝑏, 𝑐}) = {(𝑓𝑏), (𝑓𝑐)})
257, 19, 23, 24syl3anc 1371 . . . . . . 7 (({𝑏, 𝑐} ∈ 𝐾 ∧ (𝑓:𝑁1-1-onto𝑀𝑔:𝐾1-1-onto𝐿)) → (𝑓 “ {𝑏, 𝑐}) = {(𝑓𝑏), (𝑓𝑐)})
2625eqeq1d 2742 . . . . . 6 (({𝑏, 𝑐} ∈ 𝐾 ∧ (𝑓:𝑁1-1-onto𝑀𝑔:𝐾1-1-onto𝐿)) → ((𝑓 “ {𝑏, 𝑐}) = (𝑔‘{𝑏, 𝑐}) ↔ {(𝑓𝑏), (𝑓𝑐)} = (𝑔‘{𝑏, 𝑐})))
27 grlimgrtrilem2.l . . . . . . . . 9 𝐿 = {𝑥𝐽𝑥𝑀}
28 ssrab2 4103 . . . . . . . . 9 {𝑥𝐽𝑥𝑀} ⊆ 𝐽
2927, 28eqsstri 4043 . . . . . . . 8 𝐿𝐽
30 f1of 6857 . . . . . . . . . . 11 (𝑔:𝐾1-1-onto𝐿𝑔:𝐾𝐿)
3130adantl 481 . . . . . . . . . 10 ((𝑓:𝑁1-1-onto𝑀𝑔:𝐾1-1-onto𝐿) → 𝑔:𝐾𝐿)
3231adantl 481 . . . . . . . . 9 (({𝑏, 𝑐} ∈ 𝐾 ∧ (𝑓:𝑁1-1-onto𝑀𝑔:𝐾1-1-onto𝐿)) → 𝑔:𝐾𝐿)
33 simpl 482 . . . . . . . . 9 (({𝑏, 𝑐} ∈ 𝐾 ∧ (𝑓:𝑁1-1-onto𝑀𝑔:𝐾1-1-onto𝐿)) → {𝑏, 𝑐} ∈ 𝐾)
3432, 33ffvelcdmd 7114 . . . . . . . 8 (({𝑏, 𝑐} ∈ 𝐾 ∧ (𝑓:𝑁1-1-onto𝑀𝑔:𝐾1-1-onto𝐿)) → (𝑔‘{𝑏, 𝑐}) ∈ 𝐿)
3529, 34sselid 4006 . . . . . . 7 (({𝑏, 𝑐} ∈ 𝐾 ∧ (𝑓:𝑁1-1-onto𝑀𝑔:𝐾1-1-onto𝐿)) → (𝑔‘{𝑏, 𝑐}) ∈ 𝐽)
36 eleq1 2832 . . . . . . 7 ({(𝑓𝑏), (𝑓𝑐)} = (𝑔‘{𝑏, 𝑐}) → ({(𝑓𝑏), (𝑓𝑐)} ∈ 𝐽 ↔ (𝑔‘{𝑏, 𝑐}) ∈ 𝐽))
3735, 36syl5ibrcom 247 . . . . . 6 (({𝑏, 𝑐} ∈ 𝐾 ∧ (𝑓:𝑁1-1-onto𝑀𝑔:𝐾1-1-onto𝐿)) → ({(𝑓𝑏), (𝑓𝑐)} = (𝑔‘{𝑏, 𝑐}) → {(𝑓𝑏), (𝑓𝑐)} ∈ 𝐽))
3826, 37sylbid 240 . . . . 5 (({𝑏, 𝑐} ∈ 𝐾 ∧ (𝑓:𝑁1-1-onto𝑀𝑔:𝐾1-1-onto𝐿)) → ((𝑓 “ {𝑏, 𝑐}) = (𝑔‘{𝑏, 𝑐}) → {(𝑓𝑏), (𝑓𝑐)} ∈ 𝐽))
3938ex 412 . . . 4 ({𝑏, 𝑐} ∈ 𝐾 → ((𝑓:𝑁1-1-onto𝑀𝑔:𝐾1-1-onto𝐿) → ((𝑓 “ {𝑏, 𝑐}) = (𝑔‘{𝑏, 𝑐}) → {(𝑓𝑏), (𝑓𝑐)} ∈ 𝐽)))
4039com23 86 . . 3 ({𝑏, 𝑐} ∈ 𝐾 → ((𝑓 “ {𝑏, 𝑐}) = (𝑔‘{𝑏, 𝑐}) → ((𝑓:𝑁1-1-onto𝑀𝑔:𝐾1-1-onto𝐿) → {(𝑓𝑏), (𝑓𝑐)} ∈ 𝐽)))
414, 40syld 47 . 2 ({𝑏, 𝑐} ∈ 𝐾 → (∀𝑖𝐾 (𝑓𝑖) = (𝑔𝑖) → ((𝑓:𝑁1-1-onto𝑀𝑔:𝐾1-1-onto𝐿) → {(𝑓𝑏), (𝑓𝑐)} ∈ 𝐽)))
42413imp31 1112 1 (((𝑓:𝑁1-1-onto𝑀𝑔:𝐾1-1-onto𝐿) ∧ ∀𝑖𝐾 (𝑓𝑖) = (𝑔𝑖) ∧ {𝑏, 𝑐} ∈ 𝐾) → {(𝑓𝑏), (𝑓𝑐)} ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  {crab 3443  wss 3976  {cpr 4650  cima 5698   Fn wfn 6563  wf 6564  1-1-ontowf1o 6567  cfv 6568  (class class class)co 7443  Vtxcvtx 29023  Edgcedg 29074   ClNeighbVtx cclnbgr 47682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5701  df-rel 5702  df-cnv 5703  df-co 5704  df-dm 5705  df-rn 5706  df-res 5707  df-ima 5708  df-iota 6520  df-fun 6570  df-fn 6571  df-f 6572  df-f1 6573  df-f1o 6575  df-fv 6576
This theorem is referenced by:  grlimgrtri  47810
  Copyright terms: Public domain W3C validator