Proof of Theorem grlimgrtrilem2
Step | Hyp | Ref
| Expression |
1 | | imaeq2 6080 |
. . . . 5
⊢ (𝑖 = {𝑏, 𝑐} → (𝑓 “ 𝑖) = (𝑓 “ {𝑏, 𝑐})) |
2 | | fveq2 6915 |
. . . . 5
⊢ (𝑖 = {𝑏, 𝑐} → (𝑔‘𝑖) = (𝑔‘{𝑏, 𝑐})) |
3 | 1, 2 | eqeq12d 2756 |
. . . 4
⊢ (𝑖 = {𝑏, 𝑐} → ((𝑓 “ 𝑖) = (𝑔‘𝑖) ↔ (𝑓 “ {𝑏, 𝑐}) = (𝑔‘{𝑏, 𝑐}))) |
4 | 3 | rspcv 3631 |
. . 3
⊢ ({𝑏, 𝑐} ∈ 𝐾 → (∀𝑖 ∈ 𝐾 (𝑓 “ 𝑖) = (𝑔‘𝑖) → (𝑓 “ {𝑏, 𝑐}) = (𝑔‘{𝑏, 𝑐}))) |
5 | | f1ofn 6858 |
. . . . . . . . . 10
⊢ (𝑓:𝑁–1-1-onto→𝑀 → 𝑓 Fn 𝑁) |
6 | 5 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿) → 𝑓 Fn 𝑁) |
7 | 6 | adantl 481 |
. . . . . . . 8
⊢ (({𝑏, 𝑐} ∈ 𝐾 ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿)) → 𝑓 Fn 𝑁) |
8 | | grlimgrtrilem1.k |
. . . . . . . . . . . 12
⊢ 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} |
9 | 8 | eleq2i 2836 |
. . . . . . . . . . 11
⊢ ({𝑏, 𝑐} ∈ 𝐾 ↔ {𝑏, 𝑐} ∈ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁}) |
10 | | sseq1 4034 |
. . . . . . . . . . . 12
⊢ (𝑥 = {𝑏, 𝑐} → (𝑥 ⊆ 𝑁 ↔ {𝑏, 𝑐} ⊆ 𝑁)) |
11 | 10 | elrab 3708 |
. . . . . . . . . . 11
⊢ ({𝑏, 𝑐} ∈ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} ↔ ({𝑏, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ⊆ 𝑁)) |
12 | 9, 11 | bitri 275 |
. . . . . . . . . 10
⊢ ({𝑏, 𝑐} ∈ 𝐾 ↔ ({𝑏, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ⊆ 𝑁)) |
13 | | vex 3492 |
. . . . . . . . . . . 12
⊢ 𝑏 ∈ V |
14 | | vex 3492 |
. . . . . . . . . . . 12
⊢ 𝑐 ∈ V |
15 | 13, 14 | prss 4845 |
. . . . . . . . . . 11
⊢ ((𝑏 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁) ↔ {𝑏, 𝑐} ⊆ 𝑁) |
16 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝑏 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁) → 𝑏 ∈ 𝑁) |
17 | 15, 16 | sylbir 235 |
. . . . . . . . . 10
⊢ ({𝑏, 𝑐} ⊆ 𝑁 → 𝑏 ∈ 𝑁) |
18 | 12, 17 | simplbiim 504 |
. . . . . . . . 9
⊢ ({𝑏, 𝑐} ∈ 𝐾 → 𝑏 ∈ 𝑁) |
19 | 18 | adantr 480 |
. . . . . . . 8
⊢ (({𝑏, 𝑐} ∈ 𝐾 ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿)) → 𝑏 ∈ 𝑁) |
20 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝑏 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁) → 𝑐 ∈ 𝑁) |
21 | 15, 20 | sylbir 235 |
. . . . . . . . . 10
⊢ ({𝑏, 𝑐} ⊆ 𝑁 → 𝑐 ∈ 𝑁) |
22 | 12, 21 | simplbiim 504 |
. . . . . . . . 9
⊢ ({𝑏, 𝑐} ∈ 𝐾 → 𝑐 ∈ 𝑁) |
23 | 22 | adantr 480 |
. . . . . . . 8
⊢ (({𝑏, 𝑐} ∈ 𝐾 ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿)) → 𝑐 ∈ 𝑁) |
24 | | fnimapr 7000 |
. . . . . . . 8
⊢ ((𝑓 Fn 𝑁 ∧ 𝑏 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁) → (𝑓 “ {𝑏, 𝑐}) = {(𝑓‘𝑏), (𝑓‘𝑐)}) |
25 | 7, 19, 23, 24 | syl3anc 1371 |
. . . . . . 7
⊢ (({𝑏, 𝑐} ∈ 𝐾 ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿)) → (𝑓 “ {𝑏, 𝑐}) = {(𝑓‘𝑏), (𝑓‘𝑐)}) |
26 | 25 | eqeq1d 2742 |
. . . . . 6
⊢ (({𝑏, 𝑐} ∈ 𝐾 ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿)) → ((𝑓 “ {𝑏, 𝑐}) = (𝑔‘{𝑏, 𝑐}) ↔ {(𝑓‘𝑏), (𝑓‘𝑐)} = (𝑔‘{𝑏, 𝑐}))) |
27 | | grlimgrtrilem2.l |
. . . . . . . . 9
⊢ 𝐿 = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} |
28 | | ssrab2 4103 |
. . . . . . . . 9
⊢ {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} ⊆ 𝐽 |
29 | 27, 28 | eqsstri 4043 |
. . . . . . . 8
⊢ 𝐿 ⊆ 𝐽 |
30 | | f1of 6857 |
. . . . . . . . . . 11
⊢ (𝑔:𝐾–1-1-onto→𝐿 → 𝑔:𝐾⟶𝐿) |
31 | 30 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿) → 𝑔:𝐾⟶𝐿) |
32 | 31 | adantl 481 |
. . . . . . . . 9
⊢ (({𝑏, 𝑐} ∈ 𝐾 ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿)) → 𝑔:𝐾⟶𝐿) |
33 | | simpl 482 |
. . . . . . . . 9
⊢ (({𝑏, 𝑐} ∈ 𝐾 ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿)) → {𝑏, 𝑐} ∈ 𝐾) |
34 | 32, 33 | ffvelcdmd 7114 |
. . . . . . . 8
⊢ (({𝑏, 𝑐} ∈ 𝐾 ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿)) → (𝑔‘{𝑏, 𝑐}) ∈ 𝐿) |
35 | 29, 34 | sselid 4006 |
. . . . . . 7
⊢ (({𝑏, 𝑐} ∈ 𝐾 ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿)) → (𝑔‘{𝑏, 𝑐}) ∈ 𝐽) |
36 | | eleq1 2832 |
. . . . . . 7
⊢ ({(𝑓‘𝑏), (𝑓‘𝑐)} = (𝑔‘{𝑏, 𝑐}) → ({(𝑓‘𝑏), (𝑓‘𝑐)} ∈ 𝐽 ↔ (𝑔‘{𝑏, 𝑐}) ∈ 𝐽)) |
37 | 35, 36 | syl5ibrcom 247 |
. . . . . 6
⊢ (({𝑏, 𝑐} ∈ 𝐾 ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿)) → ({(𝑓‘𝑏), (𝑓‘𝑐)} = (𝑔‘{𝑏, 𝑐}) → {(𝑓‘𝑏), (𝑓‘𝑐)} ∈ 𝐽)) |
38 | 26, 37 | sylbid 240 |
. . . . 5
⊢ (({𝑏, 𝑐} ∈ 𝐾 ∧ (𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿)) → ((𝑓 “ {𝑏, 𝑐}) = (𝑔‘{𝑏, 𝑐}) → {(𝑓‘𝑏), (𝑓‘𝑐)} ∈ 𝐽)) |
39 | 38 | ex 412 |
. . . 4
⊢ ({𝑏, 𝑐} ∈ 𝐾 → ((𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿) → ((𝑓 “ {𝑏, 𝑐}) = (𝑔‘{𝑏, 𝑐}) → {(𝑓‘𝑏), (𝑓‘𝑐)} ∈ 𝐽))) |
40 | 39 | com23 86 |
. . 3
⊢ ({𝑏, 𝑐} ∈ 𝐾 → ((𝑓 “ {𝑏, 𝑐}) = (𝑔‘{𝑏, 𝑐}) → ((𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿) → {(𝑓‘𝑏), (𝑓‘𝑐)} ∈ 𝐽))) |
41 | 4, 40 | syld 47 |
. 2
⊢ ({𝑏, 𝑐} ∈ 𝐾 → (∀𝑖 ∈ 𝐾 (𝑓 “ 𝑖) = (𝑔‘𝑖) → ((𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿) → {(𝑓‘𝑏), (𝑓‘𝑐)} ∈ 𝐽))) |
42 | 41 | 3imp31 1112 |
1
⊢ (((𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿) ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ 𝑖) = (𝑔‘𝑖) ∧ {𝑏, 𝑐} ∈ 𝐾) → {(𝑓‘𝑏), (𝑓‘𝑐)} ∈ 𝐽) |