Proof of Theorem grlimgrtrilem1
| Step | Hyp | Ref
| Expression |
| 1 | | simpl 482 |
. . 3
⊢ ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → 𝐺 ∈ UHGraph) |
| 2 | | simp1 1136 |
. . . 4
⊢ (({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼) → {𝑎, 𝑏} ∈ 𝐼) |
| 3 | 2 | adantl 481 |
. . 3
⊢ ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → {𝑎, 𝑏} ∈ 𝐼) |
| 4 | | vex 3442 |
. . . . 5
⊢ 𝑎 ∈ V |
| 5 | 4 | prid1 4716 |
. . . 4
⊢ 𝑎 ∈ {𝑎, 𝑏} |
| 6 | 5 | a1i 11 |
. . 3
⊢ ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → 𝑎 ∈ {𝑎, 𝑏}) |
| 7 | | grlimgrtrilem1.n |
. . . 4
⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑎) |
| 8 | | grlimgrtrilem1.i |
. . . 4
⊢ 𝐼 = (Edg‘𝐺) |
| 9 | | grlimgrtrilem1.k |
. . . 4
⊢ 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} |
| 10 | 7, 8, 9 | clnbgrvtxedg 47998 |
. . 3
⊢ ((𝐺 ∈ UHGraph ∧ {𝑎, 𝑏} ∈ 𝐼 ∧ 𝑎 ∈ {𝑎, 𝑏}) → {𝑎, 𝑏} ∈ 𝐾) |
| 11 | 1, 3, 6, 10 | syl3anc 1373 |
. 2
⊢ ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → {𝑎, 𝑏} ∈ 𝐾) |
| 12 | | simp2 1137 |
. . . 4
⊢ (({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼) → {𝑎, 𝑐} ∈ 𝐼) |
| 13 | 12 | adantl 481 |
. . 3
⊢ ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → {𝑎, 𝑐} ∈ 𝐼) |
| 14 | 4 | prid1 4716 |
. . . 4
⊢ 𝑎 ∈ {𝑎, 𝑐} |
| 15 | 14 | a1i 11 |
. . 3
⊢ ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → 𝑎 ∈ {𝑎, 𝑐}) |
| 16 | 7, 8, 9 | clnbgrvtxedg 47998 |
. . 3
⊢ ((𝐺 ∈ UHGraph ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ 𝑎 ∈ {𝑎, 𝑐}) → {𝑎, 𝑐} ∈ 𝐾) |
| 17 | 1, 13, 15, 16 | syl3anc 1373 |
. 2
⊢ ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → {𝑎, 𝑐} ∈ 𝐾) |
| 18 | | simpr3 1197 |
. . 3
⊢ ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → {𝑏, 𝑐} ∈ 𝐼) |
| 19 | 5 | a1i 11 |
. . . . . 6
⊢ (({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼) → 𝑎 ∈ {𝑎, 𝑏}) |
| 20 | | vex 3442 |
. . . . . . . 8
⊢ 𝑏 ∈ V |
| 21 | 20 | prid2 4717 |
. . . . . . 7
⊢ 𝑏 ∈ {𝑎, 𝑏} |
| 22 | 21 | a1i 11 |
. . . . . 6
⊢ (({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼) → 𝑏 ∈ {𝑎, 𝑏}) |
| 23 | 2, 19, 22 | 3jca 1128 |
. . . . 5
⊢ (({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼) → ({𝑎, 𝑏} ∈ 𝐼 ∧ 𝑎 ∈ {𝑎, 𝑏} ∧ 𝑏 ∈ {𝑎, 𝑏})) |
| 24 | 8, 7 | clnbgredg 47844 |
. . . . 5
⊢ ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ 𝑎 ∈ {𝑎, 𝑏} ∧ 𝑏 ∈ {𝑎, 𝑏})) → 𝑏 ∈ 𝑁) |
| 25 | 23, 24 | sylan2 593 |
. . . 4
⊢ ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → 𝑏 ∈ 𝑁) |
| 26 | 14 | a1i 11 |
. . . . . 6
⊢ (({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼) → 𝑎 ∈ {𝑎, 𝑐}) |
| 27 | | vex 3442 |
. . . . . . . 8
⊢ 𝑐 ∈ V |
| 28 | 27 | prid2 4717 |
. . . . . . 7
⊢ 𝑐 ∈ {𝑎, 𝑐} |
| 29 | 28 | a1i 11 |
. . . . . 6
⊢ (({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼) → 𝑐 ∈ {𝑎, 𝑐}) |
| 30 | 12, 26, 29 | 3jca 1128 |
. . . . 5
⊢ (({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼) → ({𝑎, 𝑐} ∈ 𝐼 ∧ 𝑎 ∈ {𝑎, 𝑐} ∧ 𝑐 ∈ {𝑎, 𝑐})) |
| 31 | 8, 7 | clnbgredg 47844 |
. . . . 5
⊢ ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑐} ∈ 𝐼 ∧ 𝑎 ∈ {𝑎, 𝑐} ∧ 𝑐 ∈ {𝑎, 𝑐})) → 𝑐 ∈ 𝑁) |
| 32 | 30, 31 | sylan2 593 |
. . . 4
⊢ ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → 𝑐 ∈ 𝑁) |
| 33 | 25, 32 | prssd 4776 |
. . 3
⊢ ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → {𝑏, 𝑐} ⊆ 𝑁) |
| 34 | | sseq1 3963 |
. . . 4
⊢ (𝑥 = {𝑏, 𝑐} → (𝑥 ⊆ 𝑁 ↔ {𝑏, 𝑐} ⊆ 𝑁)) |
| 35 | 34, 9 | elrab2 3653 |
. . 3
⊢ ({𝑏, 𝑐} ∈ 𝐾 ↔ ({𝑏, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ⊆ 𝑁)) |
| 36 | 18, 33, 35 | sylanbrc 583 |
. 2
⊢ ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → {𝑏, 𝑐} ∈ 𝐾) |
| 37 | 11, 17, 36 | 3jca 1128 |
1
⊢ ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → ({𝑎, 𝑏} ∈ 𝐾 ∧ {𝑎, 𝑐} ∈ 𝐾 ∧ {𝑏, 𝑐} ∈ 𝐾)) |