Proof of Theorem grlimgrtrilem1
| Step | Hyp | Ref
| Expression |
| 1 | | simpr1 1194 |
. . 3
⊢ ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → {𝑎, 𝑏} ∈ 𝐼) |
| 2 | | simpl 482 |
. . . 4
⊢ ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → 𝐺 ∈ UHGraph) |
| 3 | | vex 3467 |
. . . . . 6
⊢ 𝑎 ∈ V |
| 4 | 3 | prid1 4742 |
. . . . 5
⊢ 𝑎 ∈ {𝑎, 𝑏} |
| 5 | 4 | a1i 11 |
. . . 4
⊢ ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → 𝑎 ∈ {𝑎, 𝑏}) |
| 6 | | grlimgrtrilem1.i |
. . . . 5
⊢ 𝐼 = (Edg‘𝐺) |
| 7 | | grlimgrtrilem1.n |
. . . . 5
⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑎) |
| 8 | 6, 7 | clnbgrssedg 47800 |
. . . 4
⊢ ((𝐺 ∈ UHGraph ∧ {𝑎, 𝑏} ∈ 𝐼 ∧ 𝑎 ∈ {𝑎, 𝑏}) → {𝑎, 𝑏} ⊆ 𝑁) |
| 9 | 2, 1, 5, 8 | syl3anc 1372 |
. . 3
⊢ ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → {𝑎, 𝑏} ⊆ 𝑁) |
| 10 | 1, 9 | jca 511 |
. 2
⊢ ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑏} ⊆ 𝑁)) |
| 11 | | simpr2 1195 |
. . 3
⊢ ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → {𝑎, 𝑐} ∈ 𝐼) |
| 12 | 3 | prid1 4742 |
. . . . 5
⊢ 𝑎 ∈ {𝑎, 𝑐} |
| 13 | 12 | a1i 11 |
. . . 4
⊢ ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → 𝑎 ∈ {𝑎, 𝑐}) |
| 14 | 6, 7 | clnbgrssedg 47800 |
. . . 4
⊢ ((𝐺 ∈ UHGraph ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ 𝑎 ∈ {𝑎, 𝑐}) → {𝑎, 𝑐} ⊆ 𝑁) |
| 15 | 2, 11, 13, 14 | syl3anc 1372 |
. . 3
⊢ ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → {𝑎, 𝑐} ⊆ 𝑁) |
| 16 | 11, 15 | jca 511 |
. 2
⊢ ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → ({𝑎, 𝑐} ∈ 𝐼 ∧ {𝑎, 𝑐} ⊆ 𝑁)) |
| 17 | | simpr3 1196 |
. . 3
⊢ ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → {𝑏, 𝑐} ∈ 𝐼) |
| 18 | | id 22 |
. . . . . . 7
⊢ ({𝑎, 𝑏} ∈ 𝐼 → {𝑎, 𝑏} ∈ 𝐼) |
| 19 | 4 | a1i 11 |
. . . . . . 7
⊢ ({𝑎, 𝑏} ∈ 𝐼 → 𝑎 ∈ {𝑎, 𝑏}) |
| 20 | | vex 3467 |
. . . . . . . . 9
⊢ 𝑏 ∈ V |
| 21 | 20 | prid2 4743 |
. . . . . . . 8
⊢ 𝑏 ∈ {𝑎, 𝑏} |
| 22 | 21 | a1i 11 |
. . . . . . 7
⊢ ({𝑎, 𝑏} ∈ 𝐼 → 𝑏 ∈ {𝑎, 𝑏}) |
| 23 | 18, 19, 22 | 3jca 1128 |
. . . . . 6
⊢ ({𝑎, 𝑏} ∈ 𝐼 → ({𝑎, 𝑏} ∈ 𝐼 ∧ 𝑎 ∈ {𝑎, 𝑏} ∧ 𝑏 ∈ {𝑎, 𝑏})) |
| 24 | 23 | 3ad2ant1 1133 |
. . . . 5
⊢ (({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼) → ({𝑎, 𝑏} ∈ 𝐼 ∧ 𝑎 ∈ {𝑎, 𝑏} ∧ 𝑏 ∈ {𝑎, 𝑏})) |
| 25 | 6, 7 | clnbgredg 47799 |
. . . . 5
⊢ ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ 𝑎 ∈ {𝑎, 𝑏} ∧ 𝑏 ∈ {𝑎, 𝑏})) → 𝑏 ∈ 𝑁) |
| 26 | 24, 25 | sylan2 593 |
. . . 4
⊢ ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → 𝑏 ∈ 𝑁) |
| 27 | | id 22 |
. . . . . . 7
⊢ ({𝑎, 𝑐} ∈ 𝐼 → {𝑎, 𝑐} ∈ 𝐼) |
| 28 | 12 | a1i 11 |
. . . . . . 7
⊢ ({𝑎, 𝑐} ∈ 𝐼 → 𝑎 ∈ {𝑎, 𝑐}) |
| 29 | | vex 3467 |
. . . . . . . . 9
⊢ 𝑐 ∈ V |
| 30 | 29 | prid2 4743 |
. . . . . . . 8
⊢ 𝑐 ∈ {𝑎, 𝑐} |
| 31 | 30 | a1i 11 |
. . . . . . 7
⊢ ({𝑎, 𝑐} ∈ 𝐼 → 𝑐 ∈ {𝑎, 𝑐}) |
| 32 | 27, 28, 31 | 3jca 1128 |
. . . . . 6
⊢ ({𝑎, 𝑐} ∈ 𝐼 → ({𝑎, 𝑐} ∈ 𝐼 ∧ 𝑎 ∈ {𝑎, 𝑐} ∧ 𝑐 ∈ {𝑎, 𝑐})) |
| 33 | 32 | 3ad2ant2 1134 |
. . . . 5
⊢ (({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼) → ({𝑎, 𝑐} ∈ 𝐼 ∧ 𝑎 ∈ {𝑎, 𝑐} ∧ 𝑐 ∈ {𝑎, 𝑐})) |
| 34 | 6, 7 | clnbgredg 47799 |
. . . . 5
⊢ ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑐} ∈ 𝐼 ∧ 𝑎 ∈ {𝑎, 𝑐} ∧ 𝑐 ∈ {𝑎, 𝑐})) → 𝑐 ∈ 𝑁) |
| 35 | 33, 34 | sylan2 593 |
. . . 4
⊢ ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → 𝑐 ∈ 𝑁) |
| 36 | 26, 35 | prssd 4802 |
. . 3
⊢ ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → {𝑏, 𝑐} ⊆ 𝑁) |
| 37 | 17, 36 | jca 511 |
. 2
⊢ ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → ({𝑏, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ⊆ 𝑁)) |
| 38 | | grlimgrtrilem1.k |
. . . . 5
⊢ 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} |
| 39 | 38 | eleq2i 2825 |
. . . 4
⊢ ({𝑎, 𝑏} ∈ 𝐾 ↔ {𝑎, 𝑏} ∈ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁}) |
| 40 | | sseq1 3989 |
. . . . 5
⊢ (𝑥 = {𝑎, 𝑏} → (𝑥 ⊆ 𝑁 ↔ {𝑎, 𝑏} ⊆ 𝑁)) |
| 41 | 40 | elrab 3675 |
. . . 4
⊢ ({𝑎, 𝑏} ∈ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} ↔ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑏} ⊆ 𝑁)) |
| 42 | 39, 41 | bitri 275 |
. . 3
⊢ ({𝑎, 𝑏} ∈ 𝐾 ↔ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑏} ⊆ 𝑁)) |
| 43 | 38 | eleq2i 2825 |
. . . 4
⊢ ({𝑎, 𝑐} ∈ 𝐾 ↔ {𝑎, 𝑐} ∈ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁}) |
| 44 | | sseq1 3989 |
. . . . 5
⊢ (𝑥 = {𝑎, 𝑐} → (𝑥 ⊆ 𝑁 ↔ {𝑎, 𝑐} ⊆ 𝑁)) |
| 45 | 44 | elrab 3675 |
. . . 4
⊢ ({𝑎, 𝑐} ∈ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} ↔ ({𝑎, 𝑐} ∈ 𝐼 ∧ {𝑎, 𝑐} ⊆ 𝑁)) |
| 46 | 43, 45 | bitri 275 |
. . 3
⊢ ({𝑎, 𝑐} ∈ 𝐾 ↔ ({𝑎, 𝑐} ∈ 𝐼 ∧ {𝑎, 𝑐} ⊆ 𝑁)) |
| 47 | 38 | eleq2i 2825 |
. . . 4
⊢ ({𝑏, 𝑐} ∈ 𝐾 ↔ {𝑏, 𝑐} ∈ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁}) |
| 48 | | sseq1 3989 |
. . . . 5
⊢ (𝑥 = {𝑏, 𝑐} → (𝑥 ⊆ 𝑁 ↔ {𝑏, 𝑐} ⊆ 𝑁)) |
| 49 | 48 | elrab 3675 |
. . . 4
⊢ ({𝑏, 𝑐} ∈ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} ↔ ({𝑏, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ⊆ 𝑁)) |
| 50 | 47, 49 | bitri 275 |
. . 3
⊢ ({𝑏, 𝑐} ∈ 𝐾 ↔ ({𝑏, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ⊆ 𝑁)) |
| 51 | 42, 46, 50 | 3anbi123i 1155 |
. 2
⊢ (({𝑎, 𝑏} ∈ 𝐾 ∧ {𝑎, 𝑐} ∈ 𝐾 ∧ {𝑏, 𝑐} ∈ 𝐾) ↔ (({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑏} ⊆ 𝑁) ∧ ({𝑎, 𝑐} ∈ 𝐼 ∧ {𝑎, 𝑐} ⊆ 𝑁) ∧ ({𝑏, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ⊆ 𝑁))) |
| 52 | 10, 16, 37, 51 | syl3anbrc 1343 |
1
⊢ ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → ({𝑎, 𝑏} ∈ 𝐾 ∧ {𝑎, 𝑐} ∈ 𝐾 ∧ {𝑏, 𝑐} ∈ 𝐾)) |