Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grlimgrtrilem1 Structured version   Visualization version   GIF version

Theorem grlimgrtrilem1 47808
Description: Lemma 3 for grlimgrtri 47810. (Contributed by AV, 24-Aug-2025.)
Hypotheses
Ref Expression
grlimgrtrilem1.v 𝑉 = (Vtx‘𝐺)
grlimgrtrilem1.n 𝑁 = (𝐺 ClNeighbVtx 𝑎)
grlimgrtrilem1.i 𝐼 = (Edg‘𝐺)
grlimgrtrilem1.k 𝐾 = {𝑥𝐼𝑥𝑁}
Assertion
Ref Expression
grlimgrtrilem1 ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → ({𝑎, 𝑏} ∈ 𝐾 ∧ {𝑎, 𝑐} ∈ 𝐾 ∧ {𝑏, 𝑐} ∈ 𝐾))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑁   𝑥,𝑎   𝑥,𝑏   𝑥,𝑐
Allowed substitution hints:   𝐺(𝑥,𝑎,𝑏,𝑐)   𝐼(𝑎,𝑏,𝑐)   𝐾(𝑥,𝑎,𝑏,𝑐)   𝑁(𝑎,𝑏,𝑐)   𝑉(𝑥,𝑎,𝑏,𝑐)

Proof of Theorem grlimgrtrilem1
StepHypRef Expression
1 simpr1 1194 . . 3 ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → {𝑎, 𝑏} ∈ 𝐼)
2 simpl 482 . . . 4 ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → 𝐺 ∈ UHGraph)
3 vex 3492 . . . . . 6 𝑎 ∈ V
43prid1 4787 . . . . 5 𝑎 ∈ {𝑎, 𝑏}
54a1i 11 . . . 4 ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → 𝑎 ∈ {𝑎, 𝑏})
6 grlimgrtrilem1.i . . . . 5 𝐼 = (Edg‘𝐺)
7 grlimgrtrilem1.n . . . . 5 𝑁 = (𝐺 ClNeighbVtx 𝑎)
86, 7clnbgrssedg 47703 . . . 4 ((𝐺 ∈ UHGraph ∧ {𝑎, 𝑏} ∈ 𝐼𝑎 ∈ {𝑎, 𝑏}) → {𝑎, 𝑏} ⊆ 𝑁)
92, 1, 5, 8syl3anc 1371 . . 3 ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → {𝑎, 𝑏} ⊆ 𝑁)
101, 9jca 511 . 2 ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑏} ⊆ 𝑁))
11 simpr2 1195 . . 3 ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → {𝑎, 𝑐} ∈ 𝐼)
123prid1 4787 . . . . 5 𝑎 ∈ {𝑎, 𝑐}
1312a1i 11 . . . 4 ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → 𝑎 ∈ {𝑎, 𝑐})
146, 7clnbgrssedg 47703 . . . 4 ((𝐺 ∈ UHGraph ∧ {𝑎, 𝑐} ∈ 𝐼𝑎 ∈ {𝑎, 𝑐}) → {𝑎, 𝑐} ⊆ 𝑁)
152, 11, 13, 14syl3anc 1371 . . 3 ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → {𝑎, 𝑐} ⊆ 𝑁)
1611, 15jca 511 . 2 ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → ({𝑎, 𝑐} ∈ 𝐼 ∧ {𝑎, 𝑐} ⊆ 𝑁))
17 simpr3 1196 . . 3 ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → {𝑏, 𝑐} ∈ 𝐼)
18 id 22 . . . . . . 7 ({𝑎, 𝑏} ∈ 𝐼 → {𝑎, 𝑏} ∈ 𝐼)
194a1i 11 . . . . . . 7 ({𝑎, 𝑏} ∈ 𝐼𝑎 ∈ {𝑎, 𝑏})
20 vex 3492 . . . . . . . . 9 𝑏 ∈ V
2120prid2 4788 . . . . . . . 8 𝑏 ∈ {𝑎, 𝑏}
2221a1i 11 . . . . . . 7 ({𝑎, 𝑏} ∈ 𝐼𝑏 ∈ {𝑎, 𝑏})
2318, 19, 223jca 1128 . . . . . 6 ({𝑎, 𝑏} ∈ 𝐼 → ({𝑎, 𝑏} ∈ 𝐼𝑎 ∈ {𝑎, 𝑏} ∧ 𝑏 ∈ {𝑎, 𝑏}))
24233ad2ant1 1133 . . . . 5 (({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼) → ({𝑎, 𝑏} ∈ 𝐼𝑎 ∈ {𝑎, 𝑏} ∧ 𝑏 ∈ {𝑎, 𝑏}))
256, 7clnbgredg 47702 . . . . 5 ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼𝑎 ∈ {𝑎, 𝑏} ∧ 𝑏 ∈ {𝑎, 𝑏})) → 𝑏𝑁)
2624, 25sylan2 592 . . . 4 ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → 𝑏𝑁)
27 id 22 . . . . . . 7 ({𝑎, 𝑐} ∈ 𝐼 → {𝑎, 𝑐} ∈ 𝐼)
2812a1i 11 . . . . . . 7 ({𝑎, 𝑐} ∈ 𝐼𝑎 ∈ {𝑎, 𝑐})
29 vex 3492 . . . . . . . . 9 𝑐 ∈ V
3029prid2 4788 . . . . . . . 8 𝑐 ∈ {𝑎, 𝑐}
3130a1i 11 . . . . . . 7 ({𝑎, 𝑐} ∈ 𝐼𝑐 ∈ {𝑎, 𝑐})
3227, 28, 313jca 1128 . . . . . 6 ({𝑎, 𝑐} ∈ 𝐼 → ({𝑎, 𝑐} ∈ 𝐼𝑎 ∈ {𝑎, 𝑐} ∧ 𝑐 ∈ {𝑎, 𝑐}))
33323ad2ant2 1134 . . . . 5 (({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼) → ({𝑎, 𝑐} ∈ 𝐼𝑎 ∈ {𝑎, 𝑐} ∧ 𝑐 ∈ {𝑎, 𝑐}))
346, 7clnbgredg 47702 . . . . 5 ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑐} ∈ 𝐼𝑎 ∈ {𝑎, 𝑐} ∧ 𝑐 ∈ {𝑎, 𝑐})) → 𝑐𝑁)
3533, 34sylan2 592 . . . 4 ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → 𝑐𝑁)
3626, 35prssd 4847 . . 3 ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → {𝑏, 𝑐} ⊆ 𝑁)
3717, 36jca 511 . 2 ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → ({𝑏, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ⊆ 𝑁))
38 grlimgrtrilem1.k . . . . 5 𝐾 = {𝑥𝐼𝑥𝑁}
3938eleq2i 2836 . . . 4 ({𝑎, 𝑏} ∈ 𝐾 ↔ {𝑎, 𝑏} ∈ {𝑥𝐼𝑥𝑁})
40 sseq1 4034 . . . . 5 (𝑥 = {𝑎, 𝑏} → (𝑥𝑁 ↔ {𝑎, 𝑏} ⊆ 𝑁))
4140elrab 3708 . . . 4 ({𝑎, 𝑏} ∈ {𝑥𝐼𝑥𝑁} ↔ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑏} ⊆ 𝑁))
4239, 41bitri 275 . . 3 ({𝑎, 𝑏} ∈ 𝐾 ↔ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑏} ⊆ 𝑁))
4338eleq2i 2836 . . . 4 ({𝑎, 𝑐} ∈ 𝐾 ↔ {𝑎, 𝑐} ∈ {𝑥𝐼𝑥𝑁})
44 sseq1 4034 . . . . 5 (𝑥 = {𝑎, 𝑐} → (𝑥𝑁 ↔ {𝑎, 𝑐} ⊆ 𝑁))
4544elrab 3708 . . . 4 ({𝑎, 𝑐} ∈ {𝑥𝐼𝑥𝑁} ↔ ({𝑎, 𝑐} ∈ 𝐼 ∧ {𝑎, 𝑐} ⊆ 𝑁))
4643, 45bitri 275 . . 3 ({𝑎, 𝑐} ∈ 𝐾 ↔ ({𝑎, 𝑐} ∈ 𝐼 ∧ {𝑎, 𝑐} ⊆ 𝑁))
4738eleq2i 2836 . . . 4 ({𝑏, 𝑐} ∈ 𝐾 ↔ {𝑏, 𝑐} ∈ {𝑥𝐼𝑥𝑁})
48 sseq1 4034 . . . . 5 (𝑥 = {𝑏, 𝑐} → (𝑥𝑁 ↔ {𝑏, 𝑐} ⊆ 𝑁))
4948elrab 3708 . . . 4 ({𝑏, 𝑐} ∈ {𝑥𝐼𝑥𝑁} ↔ ({𝑏, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ⊆ 𝑁))
5047, 49bitri 275 . . 3 ({𝑏, 𝑐} ∈ 𝐾 ↔ ({𝑏, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ⊆ 𝑁))
5142, 46, 503anbi123i 1155 . 2 (({𝑎, 𝑏} ∈ 𝐾 ∧ {𝑎, 𝑐} ∈ 𝐾 ∧ {𝑏, 𝑐} ∈ 𝐾) ↔ (({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑏} ⊆ 𝑁) ∧ ({𝑎, 𝑐} ∈ 𝐼 ∧ {𝑎, 𝑐} ⊆ 𝑁) ∧ ({𝑏, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ⊆ 𝑁)))
5210, 16, 37, 51syl3anbrc 1343 1 ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → ({𝑎, 𝑏} ∈ 𝐾 ∧ {𝑎, 𝑐} ∈ 𝐾 ∧ {𝑏, 𝑐} ∈ 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  {crab 3443  wss 3976  {cpr 4650  cfv 6568  (class class class)co 7443  Vtxcvtx 29023  Edgcedg 29074  UHGraphcuhgr 29083   ClNeighbVtx cclnbgr 47682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7764
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5701  df-rel 5702  df-cnv 5703  df-co 5704  df-dm 5705  df-rn 5706  df-res 5707  df-ima 5708  df-iota 6520  df-fun 6570  df-fn 6571  df-f 6572  df-fv 6576  df-ov 7446  df-oprab 7447  df-mpo 7448  df-1st 8024  df-2nd 8025  df-edg 29075  df-uhgr 29085  df-clnbgr 47683
This theorem is referenced by:  grlimgrtri  47810
  Copyright terms: Public domain W3C validator