Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grlimgrtrilem1 Structured version   Visualization version   GIF version

Theorem grlimgrtrilem1 48163
Description: Lemma 3 for grlimgrtri 48165. (Contributed by AV, 24-Aug-2025.) (Proof shortened by AV, 27-Dec-2025.)
Hypotheses
Ref Expression
grlimgrtrilem1.v 𝑉 = (Vtx‘𝐺)
grlimgrtrilem1.n 𝑁 = (𝐺 ClNeighbVtx 𝑎)
grlimgrtrilem1.i 𝐼 = (Edg‘𝐺)
grlimgrtrilem1.k 𝐾 = {𝑥𝐼𝑥𝑁}
Assertion
Ref Expression
grlimgrtrilem1 ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → ({𝑎, 𝑏} ∈ 𝐾 ∧ {𝑎, 𝑐} ∈ 𝐾 ∧ {𝑏, 𝑐} ∈ 𝐾))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑁   𝑥,𝑎   𝑥,𝑏   𝑥,𝑐
Allowed substitution hints:   𝐺(𝑥,𝑎,𝑏,𝑐)   𝐼(𝑎,𝑏,𝑐)   𝐾(𝑥,𝑎,𝑏,𝑐)   𝑁(𝑎,𝑏,𝑐)   𝑉(𝑥,𝑎,𝑏,𝑐)

Proof of Theorem grlimgrtrilem1
StepHypRef Expression
1 simpl 482 . . 3 ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → 𝐺 ∈ UHGraph)
2 simp1 1136 . . . 4 (({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼) → {𝑎, 𝑏} ∈ 𝐼)
32adantl 481 . . 3 ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → {𝑎, 𝑏} ∈ 𝐼)
4 vex 3441 . . . . 5 𝑎 ∈ V
54prid1 4716 . . . 4 𝑎 ∈ {𝑎, 𝑏}
65a1i 11 . . 3 ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → 𝑎 ∈ {𝑎, 𝑏})
7 grlimgrtrilem1.n . . . 4 𝑁 = (𝐺 ClNeighbVtx 𝑎)
8 grlimgrtrilem1.i . . . 4 𝐼 = (Edg‘𝐺)
9 grlimgrtrilem1.k . . . 4 𝐾 = {𝑥𝐼𝑥𝑁}
107, 8, 9clnbgrvtxedg 48156 . . 3 ((𝐺 ∈ UHGraph ∧ {𝑎, 𝑏} ∈ 𝐼𝑎 ∈ {𝑎, 𝑏}) → {𝑎, 𝑏} ∈ 𝐾)
111, 3, 6, 10syl3anc 1373 . 2 ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → {𝑎, 𝑏} ∈ 𝐾)
12 simp2 1137 . . . 4 (({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼) → {𝑎, 𝑐} ∈ 𝐼)
1312adantl 481 . . 3 ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → {𝑎, 𝑐} ∈ 𝐼)
144prid1 4716 . . . 4 𝑎 ∈ {𝑎, 𝑐}
1514a1i 11 . . 3 ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → 𝑎 ∈ {𝑎, 𝑐})
167, 8, 9clnbgrvtxedg 48156 . . 3 ((𝐺 ∈ UHGraph ∧ {𝑎, 𝑐} ∈ 𝐼𝑎 ∈ {𝑎, 𝑐}) → {𝑎, 𝑐} ∈ 𝐾)
171, 13, 15, 16syl3anc 1373 . 2 ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → {𝑎, 𝑐} ∈ 𝐾)
18 simpr3 1197 . . 3 ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → {𝑏, 𝑐} ∈ 𝐼)
195a1i 11 . . . . . 6 (({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼) → 𝑎 ∈ {𝑎, 𝑏})
20 vex 3441 . . . . . . . 8 𝑏 ∈ V
2120prid2 4717 . . . . . . 7 𝑏 ∈ {𝑎, 𝑏}
2221a1i 11 . . . . . 6 (({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼) → 𝑏 ∈ {𝑎, 𝑏})
232, 19, 223jca 1128 . . . . 5 (({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼) → ({𝑎, 𝑏} ∈ 𝐼𝑎 ∈ {𝑎, 𝑏} ∧ 𝑏 ∈ {𝑎, 𝑏}))
248, 7clnbgredg 48002 . . . . 5 ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼𝑎 ∈ {𝑎, 𝑏} ∧ 𝑏 ∈ {𝑎, 𝑏})) → 𝑏𝑁)
2523, 24sylan2 593 . . . 4 ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → 𝑏𝑁)
2614a1i 11 . . . . . 6 (({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼) → 𝑎 ∈ {𝑎, 𝑐})
27 vex 3441 . . . . . . . 8 𝑐 ∈ V
2827prid2 4717 . . . . . . 7 𝑐 ∈ {𝑎, 𝑐}
2928a1i 11 . . . . . 6 (({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼) → 𝑐 ∈ {𝑎, 𝑐})
3012, 26, 293jca 1128 . . . . 5 (({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼) → ({𝑎, 𝑐} ∈ 𝐼𝑎 ∈ {𝑎, 𝑐} ∧ 𝑐 ∈ {𝑎, 𝑐}))
318, 7clnbgredg 48002 . . . . 5 ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑐} ∈ 𝐼𝑎 ∈ {𝑎, 𝑐} ∧ 𝑐 ∈ {𝑎, 𝑐})) → 𝑐𝑁)
3230, 31sylan2 593 . . . 4 ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → 𝑐𝑁)
3325, 32prssd 4775 . . 3 ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → {𝑏, 𝑐} ⊆ 𝑁)
34 sseq1 3956 . . . 4 (𝑥 = {𝑏, 𝑐} → (𝑥𝑁 ↔ {𝑏, 𝑐} ⊆ 𝑁))
3534, 9elrab2 3646 . . 3 ({𝑏, 𝑐} ∈ 𝐾 ↔ ({𝑏, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ⊆ 𝑁))
3618, 33, 35sylanbrc 583 . 2 ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → {𝑏, 𝑐} ∈ 𝐾)
3711, 17, 363jca 1128 1 ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → ({𝑎, 𝑏} ∈ 𝐾 ∧ {𝑎, 𝑐} ∈ 𝐾 ∧ {𝑏, 𝑐} ∈ 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  {crab 3396  wss 3898  {cpr 4579  cfv 6489  (class class class)co 7355  Vtxcvtx 28995  Edgcedg 29046  UHGraphcuhgr 29055   ClNeighbVtx cclnbgr 47980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-edg 29047  df-uhgr 29057  df-clnbgr 47981
This theorem is referenced by:  grlimgrtri  48165
  Copyright terms: Public domain W3C validator